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Summary

This work is concerned with modelling the mechanical deformation or constitutive behavior
of composites comprised of a periodic microstructure under small displacement conditions at
elevated temperature. A mesomechanics approach [1] is adopted which relates the microme-
chanical behavior of the heterogeneous composite with its in-service macroscopic behavior.

Two different methods, one based on a Fourier series approach and the other on a Green’s
function approach, are used in modelling the micromechanical behavior of the composite
material. Although the constitutive formulations are based on a micromechanical approach,
it should be stressed that the resulting equations are volume averaged to produce overall
“effective” constitutive relations which relate the bulk, volume averaged, stress increment to
the bulk, volume averaged, strain increment. As such, they are macromodels which can be
used directly in nonlinear finite element programs such as MARC, ANSYS and ABAQUS or
in boundary element programs such as BEST3D.

In developing the volume averaged or “effective” macromodels from the micromechanical
models, both approaches (i.e. Fourier series and Green’s function) will require the evalua-
tion of volume integrals containing the spatially varying strain distributions throughout the
composite material. By assuming that the strain distributions are spatially constant within
each constituent phase—or within a given subvolume within each constituent phase-—of the
composite material, the volume integrals can be obtained in closed form. This simplified
micromodel can then be volume averaged to obtain an “effective” macromodel suitable for
use in the MARC, ANSYS and ABAQUS nonlinear finite element programs via user consti-
tutive subroutines such as HYPELA and CMUSER. This “effective” macromodel can be used
in a nonlinear finite element structural analysis to obtain the strain-temperature history at
those points in the structure where thermomechanical cracking and damage are expected to
occur, the so called “damage critical” points of the structure. The “exact” micromechanical
models can then be subjected to the overall “effective” strain-temperature history obtained
at the “damage critical” location and used outside of the finite element program to evaluate
the heterogeneous stress-strain history throughout each constituent phase of the composite
material. This variation must be known in order to evaluate the damage history variation
throughout each constituent phase of the composite material.

*Work funded by NASA Grant NAG3-882.
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1 Introduction

The ultimate objective of this work is to produce a computer program to analyze the hetero-
geneous stress and strain history variation at the “damage critical” locations of a composite
structure operating at elevated temperature. This report describes some of the theoreti-
cal foundations for the program. A mesomechanics [1] approach is adopted which relates
the micromechanical behavior of the heterogeneous composite to its in-service macroscopic
behavior.

Some composites are actually comprised of a periodic microstructure whilst others are
possessed of an essentially randomly distributed microstructure. Pictures of metal matrix
composites (tungsten-fiber-reinforced superalloys) which exhibit a periodic microstructure
are shown in Fig. 1 which is taken from the article by Petrasek et al [2]. When the fibers in a
composite material occupy a large volume fraction of the material, the induced deformation
in one fiber interacts with and alters the induced deformation in the neighboring fibers. When
the fibers are densely packed the interaction effect becomes dominant and must be accounted
for in the constitutive formulation.

At NASA-Lewis Chamis and his colleagues [3,4,5] employ two different approaches for
analyzing the behavior of structural composites. One method employs a sophisticated finite
element analysis of a periodic microstructure. A unit cell in the periodic microstructure is
modelled with one hundred and ninety two three-dimensional elements and the eight nearest
neighbor cells of the fibrous composite are modelled with superelements. By applying the
strain-temperature history at the “damage critical” location in the composite structure to
the superelement model, the stress-strain history throughout the unit cell can be computed
and used to estimate the maximum damage in the composite structure. This method will
necessarily require large resources in computer time and memory to analyze the viscoplastic
behavior of the composite structure under in-service thermomechanical loading conditions.

Another approach adopted by Chamis and his colleagues [3,4,5]—which avoids large com-
puter resources—is to employ composite micromechanics theory to derive simplified rela-
tionships which describe the thermomechanical constitutive behavior of multilayered fibrous
composites.

When suitable boundary conditions are applied to the superelement model of the periodic
microstructure, it is possible to predict the elastic properties of the equivalent homogenized
material. A comparison [5] with the homogenized elastic properties predicted by the simplified
micromechanical equations generally shows good agreement with the superelement model
except for the Poisson ratios. At high volume fractions (~ 60%) the longitudinal Poisson’s
ratio for unidirectional fibers predicted by the simplified equations is about 15% too small.
whilst the transverse Poisson’s ratio is about 30% too small. These anomalies occur because
the interaction between the fibers is not accounted for in the simplified micromechanical
model. This may be important when considering the highly nonlinear behavior of viscoplastic
composites at elevated temperature.

Dvorak [6] and Dvorak and Bahei-El-Din et al [7,8,9] have also made great progress in
modelling the micromechanical behavior of nonlinear composite materials and are embarked
on a combined experimental and theoretical effort. The variation of the stress-strain history
throughout the unit cell of a periodic microstructure is obtained with a finite element analysis
in which the interaction effects of the surrounding cells is accounted for by applying periodic



boundary conditions to the surface of the unit cell.
Work on the theoretical foundations behind the homogenization of micromechanical con-

stitutive models to produce bulk macroscopic models has been under way in France by Devries
and Léné [10], Léné [11,12], Duvaut [13], Renard and Marmonier [14], Léné and Leguillon
[15] and Sanchez-Palencia [16,17]. These references give a good account of the work be-
ing conducted in France by other researchers. Much of this work is founded on the use of
multivariable asymptotic techniques [18]. In an infinite periodic structure the stress-strain
history in each unit periodic cell is, perforce, identical. Due to the finite size of the compos-
ite structure the effects of surface tractions and displacements on the surface will cause the
stress-strain history to vary from cell to cell. If the unit cell is much smaller than the size
of the structure this variation from cell to cell will be small. If L is a typical dimension of
the unit periodic cell and D is a typical dimension of the composite structure, then the ratio
L/D is a small parameter of the problem. The displacement variation throughout the unit

cell will then depend on six spatial variables, i.e.,
* * *
u; = u; (T1, T2, 3, T}, T3, T3)

where z} = z;L/D. The spatial variables x} take into account the slow variation of the
displacement from cell to cell due to the finite size of the ratio L/D when u; is a periodic
function of the variables z;. By expanding the displacement and other spatial variables of the
problem into a series in powers of L/ D and equating like powers in the perturbation expansion,
it is possible to obtain the effect of the finite size of the structure on the deformation behavior
in the unit cell. Due to the perturbative assumption of small L/D this method is not expected
to be valid for thin composite sections or to be applicable at those places in the structure
where surface effects or nonperiodic inclusions are important.

Rather than employing finite element techniques to determine the stress-strain history
variation throughout the unit periodic cell, Aboudi [19] has recently developed a macro-
scopic formulation for periodic composites based on volume averaging a viscoplastic consti-
tutive model over the unit periodic cell. This work expands the heterogeneous displacement
throughout the constituent phases of the unit cell as linear and higher order functions of the
coordinates. Good agreement with experimental results was achieved by volume averaging
Bodner’s [20] viscoplastic constitutive model over the unit periodic cell, but the method is
general and any constitutive model may be used to represent the deformation behavior of the
constituent phases. The limitation here is that large spatial gradients in the strain history
may not be accurately modelled by linear or quadratic interpolation functions on the unit
periodic cell.

Weng and his colleagues [21,22] have employed self-consistent methods to study the effect
of inclusion size and volume fraction on the stress distribution in and around spheroidal
inclusions embedded in an “effective” non-uniform matrix material, and the effect which this
has on the overall “effective” macroscopic constitutive behavior of the composite. In the
first paper they point out that the derivation of the fictitious body forces which represent
the inelastic behavior of the heterogencous composite material should be obtained from first
principles rather than using their heuristic approach. In the second paper the Mori-Tanaka
theorem [24] is used to represent the effect of the heterogeneous composite, and a similar
procedure is followed in the present work to develop a self-consistent method for composites
which exhibit a periodic microstructure. In addition, the present report also derives the



fictitious body forces for a periodic microstructure from first principles. In reference [23]
Zhu and Weng have used a combined micromechanics and continuum theory approach to
develop a creep deformation model for particle-strengthened metal matrix composites. They
stress the fact that the creep resistance of the composite is underestimated when simplified
metallurgical and mechanics approaches are adopted.

A comprehensive application of micromechanics to mechanical deformation problems is
given by Mura [24] in his book “Micromechanics of Defects in Solids”. This work was used by
Nemat-Nasser and his colleagues who have exploited the mathematical simplicity of a periodic
microstructure in order to develop elastic, plastic and creep constitutive models [25,26,27,28]
for composite materials. The assumption of periodicity allows the heterogeneous stress, strain
and displacement fields to be expanded in a Fourier series, which greatly simplifies the ensuing
computations. This technique fully accounts for the interaction effects between neighboring
fibers. Even when the composite is comprised of closely packed fibers distributed at random
the method gives accurate results [25] for the “effective” elasticity tensor. When densely
packed fibers form a large volume fraction of the composite material these interaction effects
play a dominant role and must be included in the calculations. It appears that inclusion of the
interaction effects can be as, or more, important than inclusion of the random nature of the
microstructure when the fibers occupy a large volume fraction of the composite material. In
this report we have developed the Fourier series approach in order to handle the viscoplastic
behavior of the constituents in the unit periodic cell.

The nonlinear constitutive behavior of composites with a periodic microstructure can also
be treated with a Green’s function approach [29,30,31,32,33]. Here, the periodic heteroge-
neous material property variation—due to the fibers—is treated as a fictitious body force in
the matrix material. The Green’s function is used to evaluate the displacement due to a unit
point force in the matrix material and the actual displacement at any point in the composite
can then be determined by summing (integrating) the effect due to a volume distribution
of fictitious periodic body forces. It is shown in Appendix B that this method is exactly
equivalent to the Fourier series approach by invoking a mathematical technique known as the
Poisson sum formula. The Green’s function approach is more general in that the method can
also handle the nonperiodic case where there may be inclusions in one unit cell but not in
the neighboring cells. It is also able to handle surface effects, although the surface integrals
which represent the surface effects in the Green’s function method could be expanded in a
Fourier series for thin composite sections.

The approach adopted in the present work is to develop homogenization techniques which
can provide simplified macromodels for use in a nonlinear finite element program, similar in
spirit to the simplified models used at NASA-Lewis, but which account for the viscoplastic
interaction effects in the periodic structure and which allow surface effects for thin struc-
tures to be taken into account. Once the strain-temperature history at the “damage critical”
location has been found from the finite element analysis, it can be used to “drive” the mi-
cromechanical relations in order to obtain the stress-strain history variation throughout the
unit cell. These micromechanical relations are the same relations which are used to obtain
the simplified homogenized constitutive model. When the unit cell is chosen to have the form
shown in Fig. 2, it is clear that a periodic arrangement of such a microstructure allows for
the analysis of laminated composite structures.

3



2 Overview of Theoretical Modelling Approaches

2.1 Outline of Approach

In order to develop a homogeneous macroscopic constitutive model from micromechanical
principles it is necessary to know the stress-strain history throughout the unit cell of a periodic
composite. Some of the approaches which are presently being given currency are described
in the introduction.

The Fourier series and Green’s function approaches can be used to compute the viscoplas-
tic stress-strain history throughout the unit cell of a periodic composite and can be simplified
to produce a model suitable for use in a nonlinear finite element program. In this report
the Fourier series and Green’s function approaches are developed and shown to be equivalent
to each other by means of the Poisson sum formula. This equivalence holds only for an in-
finitely extended medium. When the medium has a finite size the effect of spatially varying
displacements and tractions on the surface of the medium must be accounted for. This is
easily accomplished with the Green’s function method by retaining the appropriate surface
integral contributions which are discarded in the case of an infinite medium. In the Fourier
series approach the surface integral could be included, and, in the case of a thin composite

section which has an infinite surface the integral can be expanded into a Fourier series. In
fact, the methods can be combined, so that if inclusions are present in one unit cell and not
in the neighboring cells, their effect can be taken into account in the Fourier series method
by treating them with a Fourier integral or Green’s function approach.

An overview of the present work is depicted in Fig. 3. Simplified versions of the mi-
cromechanical constitutive equations can be volume averaged to produce a macroscopic ho-
mogenized viscoplastic model. This can then be used in a nonlinear finite element program
to analyze the structural behavior of a composite structure under in-service thermomechan-
ical loading conditions. The finite element analysis yields the strain-temperature history at
the “damage critical” location and this history can then be applied to the micromechanical
equations to determine the heterogeneous stress-strain history throughout the unit cell.

A detailed flow chart in Fig. 4 shows the anticipated structural analysis procedure. Both
the Fourier series and Green'’s function approaches can be used to create a coarse subvolume
model. This coarse model can then be homogenized and included in a user defined constitutive
subroutine in a nonlinear finite element program. The Green’s function approach can also be
used to derive a simple self-consistent model for use in the user subroutine.

2.2 Homogenized Macroscopic Equations

A periodic composite material is supposed acted upon by an imposed strain increment Ae%
and responds in bulk with a stress increment Aa?j. These values are then equated to the
respective volume averaged quantities in order to obtain the “effective” constitutive relation

for the composite material, z.e.,

1 1
Aa?j = — Ao;i(r)dV(r) and AE?]- = — As;f;(r) dV (r) (1)
o ]

where V is the volume of the body.



In section 4 it is shown that the volume averaged or “effective” constitutive relation for
the composite material can be written as

Ao® = D A — % JJ[ {Pmubscus (6) = 8Dy () [k (1) = Bew ()]} aV(E) - (2)

ij — gkl

where V, is the volume of a unit periodic cell in the composite material, Ae},(r) is the total
strain increment at point r in the periodic cell due to the imposed uniform total strain
increment Ae, at the surface of the composite, and Acy(r) is the strain increment at point
r in the periodic cell representing the deviation from isothermal elastic behavior. The fourth

rank tensor 6D;j(r) is defined by the relation

6Diju(r) = 9(r) (Difjlcl - D:;kz) (3)
where #(r) = 1 in the fiber and ¥(r) = 0 in the matrix, with D{jk, denoting the elasticity
tensor of the fiber and D[y, that of the matrix.

1,
In the expression for the average or “effective” constitutive relation in equation 2, the

quantities Aey;, Di%y; and 6§D;j.(r) are given. The deviation strain increment Acy(r) can
be obtained throughout the periodic cell as a function of position r by using an explicit
forward difference method since the stress and state variables in a viscoplastic formulation
will be known functions of position at the beginning of the increment. Everything is therefore
known explicitly except the total strain increment Aej,(r).

2.3 Fourier Equation Overview

In the Fourier series approach described in section 4 we find that the total strain increment
is determined by solving the integral equation,

1 +oo
A (r) = Ay + v Z Z Z,gklij (€) x
c np=0

x /V / / T DT Ay (1) = 8D () [AeT, () — Acys (v)]} aV (') (4)

yrs

where the fourth rank tensor gy;; (¢) is given by
1
giii (§) = 5 (GGMi" () + GGMi™ () (5)

in which the Christoffel stiffness tensor M;; (¢), with inverse MJI (¢) is defined (cf. [33]) by
the relation,

M;; (€) = DyiaoCq (6)
with ¢, = &,/V&.&Em = &,/€ being a unit vector in the direction of the Fourier wave vector §.
and & = \/E,,&,, denoting the magnitude of the vector £. In equation 4 the sum is taken over

integer values in which
21, 27, 2mng (7)

L’

£ =



and L,, L,, L are the dimensions of the unit periodic cell in the z;, z5, z3 directions, so that
V. = LyL,L3. The values of n;, n,, ns are given by

n,=0,£1,+2,£3,... etc., forp=1,2,3 (8)
and the prime on the triple summation signs indicates that the term with n; =ny =nz =0

is excluded from the sum.

2.4 Green’s Equation Overview

In the Green's function approach the total strain increment Aef,(r) is determined by solving
a different integral equation, viz.,

Aefy(r) = Ay, + ///Uklmn - {DﬁnmAcrs (r') —

— 6Dy (1) [Ae,s (t') = Acy,s ()] } aV (¥') 9)

where the fourth rank tensor Uy, (r — r') gives the kl component of the total strain incre-
ment at point r due to the mn component of a stress increment applied at point r’ in the
infinite matrix with elasticity tensor D] ., i.e.,

’ Bszm (I‘ - I‘I) 62Glm (I‘ — I")
Ukima (r = 1) = 2 ( 0x,0x,, + 0x,0%, (10)

and the volume integration in equation 9 extends over all the periodic cells in the composite

material, i.e., over the entire composite.
The Green’s function tensor is defined in Appendix A, equation A.26, by the Fourier

integral [24,32,33]
3 1
/// d K A[ )e——iK.(r—I") (11)

in which the tensor ¢ is now defined by the relation {; = K;/K with K = /K K, denoting

the magnitude of the vector K = (K7, Kj, K3).
In Appendix B it is shown, by applying the Poisson sum formula, that equations 4 and 9
are identical, although the summation extends over the integer values n;, ny, n3 in equation 4

and extends over the periodic cells in equation 9.

2.5 Integration of the Equations

Both equations 4 and 9 are implicit integral equations for the determination of the total strain
increment Acl;(r), since this unknown quantity appears both on the left hand sides of the
equations and on the right hand sides under the volume integrations.

The “effective” constitutive relation given in equation 2 and the total strain increment
relation, given by either equation 4 or 9, contain the volume integration of the deviation
strain increment Acy(r). In the periodic cell the deviation strain increment at any point r



will be determined from a unified viscoplastic constitutive relation [34] appropriate to the
constituent phase in which the point r resides. If a constituent phase is included at the fiber-
matrix interface, a constitutive relation can also be proposed for this phase, and the resulting
inelastic strain increment determined for inclusion in the volume integrals. This may be
important for metal matrix composites where there can be chemical reactions between fiber
and matrix at elevated temperatures, and for composites where the fiber has been coated to
enhance overall composite properties.

Equations 2, 4 and 9 form the basic incremental constitutive equations for determining the
“effective” overall deformation behavior of a composite material with a periodic microstruc-
ture. In order to update the stress state in each of the constituent phases in preparation
for integrating the “effective” constitutive relation over the next increment, the constitutive

relation,
Acyj(r) = Dyju(r) (Ach(r) — Ack(r)) (12)
is used, where D;;u(r) = Difjkl or D%, according as the point r is in the fiber or matrix.

This relation is used to update the stress ¢;;(r) and, in turn, the internal viscoplastic state
variables ¢;(r) at each point r in preparation for computing Acy(r) in the next increment.

The derivation of the preceding equations and some methods for their solution are dis-
cussed in the succeeding sections of this report. Numerical solutions will be obtained during
the research effort from appropriate FORTRAN computer programs.

3 Periodic Microstructure

3.1 Volume Averaging

The periodic composite is supposed acted upon at its surface by a spatially linear displacement
increment, AuY(r), given by

Aul(r) = xjAs?j + xjAw?j (13)
where Aegj and Aw?j are the spatially uniform strain and rotation increments at the surface

of the composite.
If the matrix material was homogeneous and had no fibers embedded in it, the strain

increment would be homogeneous and given by

AL 1 (G(Au?) N 8(Au2)) (14)

=3\ 78t o

Since this is constant, we may trivially volume average Ae?j over the volume V of the homo-
geneous matrix material to obtain

1l (0(Ad(r))  B(Aul(r))
0 _ - 2 7
Ach =+ /V/ | - ( 5t | V) (15)
which, by Gauss’ divergence theorem, may be written as
1
acly = = f[ 3 (nim)Aud(r) + ni(r) Auf(r) dS(x) (16)
S

7



where the integral extends over the surface of the material and n,(r) denotes the outwardly
directed unit normal vector at point r on the surface. Thus, by applying the displacement
increment Au?(r) in equation 13 over the surface of the material to produce the surface strain
increment given in equation 16, equations 15 and 16 show that the strain increment in the

matrix material is spatially uniform.

If the displacement increment Au%(r) in equation 13 is applied to the actual composite
material, the total displacement increment within the material, Au? (r), will vary in a periodic
manner due to the assumed geometric periodicity of the composite material, so that

Aul(r) = Aud(r) + Auy(r) (17)

where Au{(r) is the displacement increment which would be induced in the homogeneous
matrix if the fiber phase were absent, and Awu;(r) is the perturbation or deviation from the

homogeneous value due to the presence of the fibers.
Corresponding to these displacement increments, the total strain increment at any point

r in the composite, Ael (r), is given by the relation

Acl (r) = Aed, + Aep(r) (18)
where

(19)

(AU  A(AuY) d(Auy)  O(Aw)
AE“ 2 < 6213[ + 8:1:k and Ac‘:kl(r) N 2 8331 + (%vk

with Ae), representing the spatially constant total strain increment which would be produced
on the surface and in the interior of the homogeneous matrix if the fibers were absent, and
Acey(r) representing the deviation from the uniform value due to the presence of the fibers.
Both the total strain increment Ac’(r) and the perturbed strain increment Acgg(r) vary

throughout the composite in a periodic manner.

We define the volume averaged stress and strain increments as Aa and Aem, respectively.
The required “effective” constitutive equation for the composite materlal is then an expression
relating the volume averaged stress and strain increments. For a function f(r) which varies
with position the volume average is defined by the relation

=y [ rmave (20)

Since the composite is assumed to be comprised of a periodic aggregate of identical unit cells,

- Ll swave 1

where V. denotes the volume of the unit periodic cell.
If we volume average the total strain increment in equation 18, we obtain

(AeT) = ///Aek, )dV (r) = Aegl+% // Aew(r)dV (r) (22)
S

we may write



or

(AE{» = A621 + <AEH> (23)
But the volume averaged total strain increment is defined as Ae));, so that (Ae})) = Ae), and
<A€k1> =0 (24)

which shows that the volume averaged perturbation strain increment, Aey(r), is equal to
zero.

3.2 Eigenstrain and Deviation Strain Increments

If the elasticity tensor is denoted by D;;r(r) and the inelastic strain tensor by €f(r), then
the constitutive equation at any point r in the composite material can be written as

0;j(r) = Dyju(r) (sf,(r) —en(r) — an(r) (T - T[))) (25)

where ay(r) is the coefficient of thermal expansion.
The incremental form of Hooke’s law is

Acyy(r) = Dijua(r) (Acf(r) — Aci(r)) (26)

where Acy(r) denotes the incremental strain representing the deviation from isothermal elas-
tic conditions and is given by

Ack(r) = Aef (r) + of,(v)AT (27)
in which

a;,(r)AT = akl(r)AT + (T - To) Aakl(r) e
= Dygli(r) ADijmn(r) (e5a(r) — 5, (r) — ama(r) (T —Ty))  (28)

is the nonisothermal increment in strain. The tensors AD;;x(r) and Aa(r) represent the
incremental changes in the elasticity and thermal expansion tensors due to the temperature

increment AT.

In a unified viscoplastic constitutive formulation [34] which is integrated by an explicit
forward difference method, the inelastic strain increment Aef(r) is a function of the current
stress (at the beginning of the increment), o;;(r), and the current values of the internal
viscoplastic state variables, ¢;(r). For example, if

55 = fij (arsa QS) (29)

then Aef; = fij (0rs,qs) At, and the inelastic strain increment is independent of the total
strain increment Aef;(r). This independence of the inelastic strain increment on the total
strain increment is no longer true if an implicit integration method (e.g. backward difference)
or subincrementation method is used.

The elasticity tensor D, (r) may be written as

Diju(r) = Dy + 6Dijri(r) (30)

9



where

8Dyju(r) = 9(r) (DL, — D) (31)
and Y(r) = 1 in the fiber and ¥(r) = 0 in the matrix, the superscripts f and m referring to
the elasticity tensor of the fiber and matrix, respectively. The constitutive equation at any
point r can then be written, from equation 26, as

Acy(r) = (D + 8Dijui(r)) (Aeh + Aei(r) — Ack(r)) (32)
Acij(r) = DT (Aed + Aeu(r)) -
— {Dg.‘klAckl(r) — 6D;jri(r) [Aegl + Agy(r) — Ackl(r)” (33)

If the quantity in braces is set equal to D[}, Aey(r), that is, if
D7 Acky(r) = DIy Ack(r) — 8Dy(r) [Ach + Aew(r) — Acy(r)] (34)
then equation 26 can be written in the form,
Aci;(r) = Dy (Aef(r) — Aey(r)) = Dy (M) + Ae(r) — Acj(r)) (35)

From the preceding equation it is evident that the eigenstrain increment, Aej;(r), represents
the incremental deviation from isothermal elastic behavior in the composite material when
the elasticity tensor is taken to be a spatially constant tensor appropriate to that of the

matrix phase.
Newton’s law for continuing static equilibrium throughout the strain increment requires
that (A
0T
Oz j
Equations 35 and 36 then require that

O{ Dy (Aefy + A (r) — Acyy(r))

5 —0 (37)

or, if A&}, is constant,

m O(Aen(r))

17kl ax]

d(Aey(r))
Oz;

_ nym
- Dijkl

4 Fourier Series Approach

4.1 Fourier Expansions

The application of Fourier series to the calculation of the “effective” overall constitutive
behavior of periodic composites has been dealt with in detail by Nemat-Nasser and his col-
leagues [25,26,27,28]. This work is used in this section to develop constitutive relationships
for viscoplastic composite materials under small displacement conditions.
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Due to the geometric periodicity of the composite we may expand Awu(r) and Acj,(r) in
a Fourier series (cf., for example, Appendix 3 of Mura’s book, [24]). This gives

oo o £ 27 2mng 2nng )

Auk(r) _ Z Z Z/ Aﬂk (nl,n2,n3) ez( In 1+ La T2+ I %3

n1=0 ny=0 nz=0

(39)

where L, L,, L3 are the dimensions of a unit cell in the x;, xo, 3 directions. The coefficients

Aty in the Fourier expansion are determined by multiplying each side of equation 39 by
[ 2mm ) 21mo ’ 27rm3T,
e l( Lo L L J) and integrating over the volume of the unit cell to give

Ly Ly L (27m1 +21m2 +21rn3 )
i T1 T2 T
LL2L3 [ [ [ aume™ om0 gy dnyday (40)

r1=022=0x3=0

Ay ("1, na, ns)

where only the terms with m; = n; survive in the summations.
Equations 39 and 40 can be written in shortened form as

Aug(r) =" Z 3 Adiy (£) €67 (41)

np=0

with coefficients At (§) determined by the inverse relation

1 .
~ —_ —i€ér
Ai (§) = /V / Ay, (r)e~ T 4V (r) (42)
where
€= (1,6,8), r = (z1,72,%3), Ve=1L1L:Ls (43)
with 5
& = an (no sum on 1) fori=1,2,3. (44)

The strain increment Ac},(r) can also be expanded in a Fourier series to give

Agp(r) =" Z STAgy (€) etT (45)

n,=0

with coefficients A€}, determined by the inverse relation
Agy (€ V// Agpy(r)e " dV(r) (46)

In equations 41 and 45 the prime indicates that the term with n; = ny = n3 = 0 is excluded
from the summations, since Ay (n; = 0,ny = 0,n3 = 0) represents a rigid body displacement
increment and A€}, (ny = 0,n2 = 0,n3 = 0) represents a spatially uniform strain increment.

11



4.2 Equilibrium Equation

By substituting equation 41 into equation 19; equation 19 into the left hand side of equation
38; and equation 45 into the right hand side of equation 38, the equilibrium relationship

becomes

D"'HZZZ (Auk €) &€, + Ay (€) gkgj) gbT =

np=0
—tDy > Z Z A} (&) & etT

or

ngzflfjAak &) = z]szj Agy (&) (47)

If £ = /§,€ denotes the magnitude of the vector €, a unit vector ¢ in the direction of & can
be written as (; = §; /€. Equation 47 can therefore be written in the form,

D7, (&) (5) iy (€) = —iDI & AEL (€)

§)\¢
or
& (DZLHQC]') Aty (§) = —iD%lklngéI:l (6 (48)
The second rank tensor,
M (€) = M (¢) = DGé; (49)
is called the Christoffel stiffness tensor (¢f. [33]) and equation 48 can be written as
€' My (¢) Ay (€) = —iDJ, 08/, (€) (50)

This equation can be inverted by premultiplying each side by the inverse tensor £ 2M™! to
give the Fourier expansion coefficients

Aﬂ‘k (6) = _ZMzI; ( )Dz]rs‘ngé:s (g) 5_2 (51)

The expansion coefficients can now be substituted into the Fourier expansion of Au(r) in
equation 41 to give

Aug(r) = =3 3" 3 M () D & AES, (£) 47 (52)

This result may now be substituted into equation 19, so that the perturbation strain increment
may be written as

Mol = £ 5 5 L (€M © 66+ €907 (O 66) DA @ (39)

np=0

If we define the fourth rank tensor gy;; (¢) by the relation
1
ous (€)= 5 (M (© 66+ My (€) G ) (54

12



then the perturbation strain increment can be written in the form

Aekl Z Z Z gklz] Dz_yrsAé* (6) e‘if-l‘ (55)

np=0

and by inserting the relation for the Fourier expansion coefficients Aé}, from equation 46, we

obtain
Acw(r zzz guis (¢ // Dy, Act, (t) € v (x) (56)

where the integration extends over the volume, VC = L,LyL3, of the unit periodic cell.
From equation 18 the total strain increment is given by

Ach(r) = Aehy + Zzzgkm (©) // DR Ac, (f) € av () (57)

which, from the definition of D Aer, (r') in equation 34, may be written in the final form,

ijrs

Acfi(r) = Aedi+y, zzzgkm (©) /// =) (D Ac, (r')

— 6Dyjrs () [Aem (r') — Acr ( r')] }dv(r) (58)

This implicit integral equation—equation 4 in section 2.1—must be solved to yield the total
strain increment Ael,(r) at each point r in the unit periodic cell.

Instead of solving for AeZ(r) from this implicit integral equation, we could use equation 34
to eliminate Ae7,(r) from equation 57 to give an equivalent integral equation for Aej,(r), viz.,

D:;uAez:xr) = D:;-‘klAcum — 6Dyu(r) [Ael — Aci(r)] -
- 6Dlel Z Z Z gklmn ///Dmnrs ) (r=r) dV(I‘ ) (59)

The incremental constitutive relation at any point r is given in equation 35, and this
relation can be used to update the stress state at any point r in the unit cell once equation 59
is solved for Ac,(r). Alternatively, equation 58 can be solved for Aef,(r) and inserted into
equations 34 and 35. The overall “effective” constitutive relation for the composite material
can be obtained by averaging equation 35 over the unit periodic cell. This gives

(Acy;) = (DI, (Ael + Aeyy — Aeyy))

or

(Agij) = ZLHAS& + Dy (Qen) — Dy (Aeg) (60)
If we equate the volume averaged stress increment (Ao;;) and the overall bulk response stress
increment AUU, i.e., if (Aoyj) = AO'U, and we note from equation 24 that the volume averaged
perturbation strain increment is zero, i.e. (Aeg) = 0, then the overall “effective” constitutive

relationship is
AU?]' z]klAekl DZ‘H (Degy) (61)
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or

A = DI AEY, - % J[[ (Db () = 6Dy () [Ach, () — Bew )]} V@) (62)
Ve

which is the result presented in equation 2 of section 2.2. The procedure for integrating the
overall “effective” constitutive relation then proceeds as follows.

4.3 Fourier Integration Algorithm

1. From a knowledge of the stress state throughout the unit periodic cell at
the current time, ¢, calculate the inelastic strain increment Acf, (0, g5, r) from an
appropriate unified viscoplastic constitutive relation. The viscoplastic constitutive
relation will vary according as r is in the fiber or matrix phase, respectively.

2. Compute the eigenstrain Ac},;(r) throughout the unit periodic cell from the
implicit integral equation 59 or from equations 34 and 58.

3. Compute the stress increment throughout the unit periodic cell from equa-
tion 35 and update the stress, strain and viscoplastic state variables according to

the relations
0ij (r,t + At) = 045 (v, t) + Doy(r),

T
el (r,t+ At) =] (r,t) + Ael(r),
g; (r,t + At) = ¢; (r,t) + Ag; (r) .

4. Calculate the overall “effective” stress and strain increment for the compos-
ite from equation 61 and update the overall “effective” stress and strain from the
relations

0 _ 0 0
oy (t+ At) = oy, (t) + Aoy,

5. Repeat the preceding calculations for each incremental load step.

4.4 Implicit Integration Algorithm

The preceding algorithm makes use of the fact that the inelastic strain increment Aef(r) is
independent of the total strain increment Aef,(r) if an explicit forward difference method—
such as Euler or Heun forward difference—is used to integrate the unified viscoplastic relations
for the fiber and matrix phases. If an implicit method—such as backward difference or sub-
incrementation—is used, the inelastic strain increment depends on the total strain increment.
In this case the total strain increment must be obtained by iterating equation 58 in the form,

too
Acy(r) = Aegy + % > > giii (€) ///eig'(r_r/) {DgrsAcrs (I‘/, Ae,, (r’)) -
c v

np=0

— 6Dy () [AEL, () = Acy, (v, AL, ()]} AV (F) (63)
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The first iterative guess can be taken as Aef)(r) = Aed;, and the right hand side evaluated
to give an improved guess for Aef,(r). This process is then continued with

{AEL(I‘)})\_H = A&gl -+ % Zniozl Gklij (C) 4//ei§.(r—r') {D'g'trsAcrs (I‘/, {Agzj;q (I‘l)})‘) -
— 8D;jrs (r') [{Aefs (r')}/\ A (r’, {Aez;q (r’)}/\)] } dv(r’) (64)

until the A and (A + 1)* iterates of Aef,(r) converge.
Equation 59 is not so convenient for iteration as equation 58 when AcF (r) depends on
Acel,(r). Tt is always necessary to know the total strain increment A (r) in order to calculate

the inelastic strain increment Aef, (r’ , Aegq (r' )) But equation 34, viz.,
D}y Aer (r) = Dy Acy (r, Ae;(r)) — 6Dy (r) [Ae{,(r) — Acy (r, Ae;(r))] (65)

is an implicit equation for Ael;(r) when the iterated quantity, Ae},(r), is given. Equation 63
is therefore the appropriate equation to iterate when the inelastic strain increment depends

on the total strain increment.
The procedure for solving the implicit integral equations in 58, 59 and 63 is described in

section 8.

5 Green’s Function Approach

5.1 Green’s Solution of Navier’s Equilibrium Equation

The equation of continuing static equilibrium for the composite material throughout an ap-
plied strain increment is given by

O(Aoy(r))

G+ A =0 (66)

where A f;(r) is the incremental body force per unit volume of the composite material. From
equations 35 and 66 we obtain
o(adh(r)) 8

Dy bz, = oz, (DEHA&;I(T)> - Afi(r) (67)

which is equivalent to equation 37 in the absence of the incremental body force A f;(r). From
this equation it is clear that the divergence of the stress variation produced by Aej,;(r) may be
formally regarded as a fictitious body force increment, analogous to A f;(r), which is applied
to the homogeneous matrix material with elasticity tensor D7},,. The theory of elasticity for
homogeneous materials is generally concerned with the solution of the homogeneous differ-
ential equation 67— Navier’s equation—when the right hand side is zero. When body forces
are present the standard method of solution is to obtain the displacement solution at r due
to a unit body force applied at r’. This solution is given by the Green’s function G;; (r — r')

15



which gives the displacement in the i** direction at r due to a unit point force applied in
the j" direction at r’. For a distributed incremental body force Af; (r) the displacement
increment at r is obtained by summing the results for the distribution in the form

Bute) = [[f G e )05 AV () (68)

The integration extends over the whole volume, V, of the composite material which may be

regarded as being of infinite extent.

When Af; (r') = 0 we know that the displacement solution is Au](r) = Au)(r), cor-
responding to an applied uniform strain increment Ae?j on the infinite boundary of the
homogeneous matrix. For an effective distributed body force increment given by the right
hand side of equation 67, with Af; (r') = 0, the solution for the total displacement increment

Aul'(r) can be written as
A (r) /// Gun (v =) 5 (Difnnei(€) ) dV(¥) (69)

This corresponds to equations 17 and 39, the volume integral corresponding to the perturbed

displacement increment Aw;(r) in 17.
For a material which is homogeneous with elasticity tensor D7, the Green’s function

satisfies the differential relation (¢f. Appendix A, equation A.11),
o 02Gi (r — 1)

ikl 8.”13]'8.'171

where &, is the Kronecker delta tensor given by é;,, = 1 if i = m and é;,, = 0 if ¢ # m, and
5 (r — r’) is the three dimensional Dirac delta function defined by the relation

b(r—r1)=6(xy —x))6(x2 — x5) 6 (x3 — x3) (71)

+6mb(r—1) =0 (70)

By applying the Fourier integral techniques in Appendix A, the Green’s tensor is shown to

have the Fourier integral form,
3K M,; : )
/// d )e—zK.(r—r) (72)

in which the inverse Christoffel stiffness tensor (cf. [33]) M;;' (¢) is defined by
M7 (€)= (DmiaGle)” (73)

with ¢, = K,/\/KmKn = K,/K being a unit vector in the direction of the Fourier wave

vector K, and K = ,/KmK; denoting the magnitude of the wave vector K.
Making use of the relation

/ 0 m * 0
Gik (I‘ - I )5}7 (DklmnA Emn ( )> = 8—1'1 (le ( )DklmnAg ( )) -
8Gik (I‘ )
D™

- / kimn
Oz

Ael,, (r) (74)

16



we niay write equation 69 in the form

Au(r) = Addr) - [ / /i 5%, (Gik (= 1) D A (1) ) AV (') +
+ / =t aG”" ) pp et () dV(r) (75)

The first volume integral can be transformed into a surface integral via Gauss’ divergence
theorem, viz.,

I 5 (Gt 0 = ¥ Ditmnen () V(5" = [ (<) Gu (5 =5 DS (<) dS(E)
v s
(76)

The surface integral extends over the entire outer surface of the “infinite” matrix material.
Since this is assumed to be at an infinite distance, all the integration points r’ in the surface
integral are at an infinite distance from the field point r and Gy (r — r') = 0. Thus, for an
infinite body the first volume integral in equation 75 vanishes. This would not be the case
for a finite body in which the field point r is close to the surface integration point r’/, and
the volume (or surface) integral would need to be retained for these situations. In this case
other surface integrals would arise (¢f. Appendix D, equation D.27) due to the application of
boundary incremental displacements or surface tractions on the surface of the material.

From the properties of the Green’s function,

OGu (r—r') _ Gy (r—r) (77)

Ox; Oz

which follows since G;; is a function of
r—r = (z —z},Ts — Ty, T3 — Ty3) (78)

Equation 75 may then be written alternatively as

af 6) = st - fff ) Dl () AV (F) (79)

1

But Aefi(r) = 3 (8 (AuzT(r)) /0z;+ 0 (Au]T(r)) /Bcci), so that by differentiating equation 79
with respect to z; and z; and taking half the sum, we obtain

ach(r) = ety + [[[Uint (v = ©') Dipnies,,, (') aV (x) (80)
14
which, by means of equation 34, may be written as
Agfi(r) = Aey; + ///qul DklrsACTS( ) -
~ 6Dpurs (v') [AET, (1) = Acye (r')] } AV (1) (81)
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An equivalent integral equation, involving the eigenstrain increment Agj;(r), can also be
obtained by using equation 34 to eliminate AeiTj(r) from equation 80, which gives

D Aey(r) = DIyAcu(r) — 6Dyu(r) [Ael — Acu(r)] -

~ 6 Dyju(r) / / Uimn (r = t') Dy Acy, (r') @V (x') (82)
v
In the preceding equations the operator,
3 _on_ 1 PGy (r—r) Gy (r-r')
Ussia (r = 1) = 2 Oz ,;0z + Oz;0x; (83)

gives the ij component of the strain increment at point r due to an applied stress increment
component k! at point r’ in an infinite homogeneous medium with elasticity tensor D7, and

Green’s function given by equation 72.

5.2 Equivalence of Perturbed Strain Increment

From equations 18, 56 and 80 we see that the perturbed strain increment, Aeg(r) = Al (r) -
Ac!,, is given by the equivalent relations,

1 T o . ,
Aekl(r) = ‘_/- Z Z Z Gklmn (C) // DmnrsAg:s (I‘/) 616(1‘-'. ) dV(r/) (84)
c np:0 V.
or
Aew(x) = [[[Usimn (v = 1) DB, () AV () (85)
14

The volume integral in the Fourier series representation extends over the volume, V., of
the unit periodic cell and the summation extends over the integers n, = 0,+1,+2,..., etc.,
where p = 1,2,3. In the Green’s function approach the volume integral extends over the
entire infinite medium, i.e., over all the periodic cells comprising the material. It is shown in
Appendices B and C that the Fourier summation expression in equation 84 can be converted
into the Green’s function expression in equation 85 by means of the Poisson sum formula.

From ecquation 34 it is evident that if the elastic properties of the fiber are the same as
that of the matrix, then 6D, (r) = 9(r) (Difj,d — D{Tj‘k,) = 0, in which case

Aejy(r) = Ack(r) (86)

is known explicitly without having to solve the integral equation. From equations 58 and 81 it
can also be observed that Ae],(r) is known explicitly when 6D, (r) = 0. The explicit relation
in equation 86 holds only when an explicit forward difference method is used to integrate the
viscoplastic constitutive relations. For implicit integration methods in which the inelastic
strain increment Acl (r) depends on the total strain increment Aef,(r), equations 58 and
81 show that even when 8D, (r) = 0, the equation to determine Aef(r) is still an implicit

integral equation.
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6 Self-Consistent Method

6.1 Outline of Self-Consistent Method

In this section we establish a self-consistent relationship between the overall “effective” stress
increment, Aa?j, and the applied strain increment, Asgj, for a matrix material which has

cylindrical fibers embedded in it in a periodic fashion.
From equations 34 and 61, this relationship can be written as

ij

1

Achy = Duaey — o [ {Dhubou (0) = 6Digu () [Ach () = Acw ()]} aV(r) — (87)
c VC

where the total strain increment is determined from equation 81 in the form,

AEZ}(I‘) = Aggl + ///Uklmn (I‘ - I‘/) {DznrsAcTS (l") -
Vv

= 6Dpanrs (¢') [AX, (1) = Acyq (F)]} AV (Y) (88)

These equations can be solved in an approximate fashion by means of a self-consistent
method in the following manner.

First, assume that the unit periodic cell consisting of a cylindrical fiber embedded in a unit
matrix cell, Fig. 5, is replaced by a cylindrical fiber (of radius = a) embedded in a cylindrical
matrix (of “effective” radius = b) as depicted in Fig. 6. The other unit cells outside the given
unit cell—i.e., the rest of the composite—are then smeared out into a uniform matrix material
whose overall “effective” constitutive properties are the volume average of the constitutive
properties of the constrained unit periodic cell. The “effective” constitutive properties will
be transversely isotropic if the fibers are arranged in hexagonal arrays or tetragonal if they
are arranged in square arrays.

Second, assume that the total strain increment, Ael (r), and the strain increment repre-
senting the deviation from isothermal elastic behavior, Acy(r), are spatially constant in the
fiber and matrix phases of the unit cell. These constant values (different in the fiber and
matrix of the unit cell) are taken to be the volume averages over the respective constituent
volumes of the fiber and matrix phases of the unit cell. _

The composite now consists of three constituent phases, wviz., the fiber, matrix, and
smeared out average phases. If the elasticity tensors of these phases are denoted by Difjkl,
D7y, and D, w1, respectively, then the elasticity tensor at any point r in the composite can be

written as

Diirs(r) = Dyyrs + 6Djurs(r) (89)
where
6 Dyirs(r) = 5D1{1rs = Dl{lrs — Dirs (90)
if r is in the fiber;
6Ditrs(x) = 6Dy = Ditry — Diirs (01)
if r is in the matrix; and .
6 Dpirs(r) =0 (92)
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if r is in the surrounding smeared out “effective” material.
The fiber and matrix constituent phases now represent fictitious body forces in the infinite
“effective” medium with elasticity tensor D;;y;, and the total strain increment is obtained from

the solution of the integral equation,

Acl(r) = Al + / / / Usjut (t — t') Dims A2, (r') dV (') (93)
14

in which

DiursAe}, (r') = DiraAcry (') = 6Dy () [Ae], (r) = Acy, ()] (94)

6.2 Strain Increments in Three Phases

We now make the approximation that the strain increments in the three phases are spatially
constant and equal to their respective volume averages, so that if r’ is in the fiber AsiTj (r')

and Ac;; (r') are replaced by

Acl(f) =1 / [[ach &) av(r) (95)
and )
.. —_— .. 4 /
Aey () =7 / / [Acy () av() (96)
so that, from equation 27,
Acy(f) = Aefi(f) + aif AT (97)

with
o/ AT = o, AT+ (T - T)) Aaf; -

- (Dz]k:l) A‘Dljcclmn ( ﬁn(f) - Erin(f) - arfnn (T - TO)) (98)
If ' is in the matrix the relations are replaced by
AT (m) = / / AT (r') dV (r') (99)
and
Acij (m =y // Acyj (r (r') (100)
where
Aci;(m) = (m) + af"AT (101)
and

o"AT = AT + (T—TO)Aa’”‘ -
~ (D) AD,, (€5,(m) — el (m) — ol (T - Ty)) (102)

kimn
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If ' is in the smeared out “effective” or homogenized medium the corresponding results are

. 1
Ael = Aed, = = / / AeL (') dV(r) (103)
v
and .
O ——— o / ¥
Rey =1 /V / / Aci; (r') dV (r') (104)
where b
and

~ D s ADxtmn (€%, = Ery = Gmn (T = T)) (106)

The volumes V¢, V,, and V; refer to the volumes of the fiber, matrix and smeared out medium,
respectively. If V, is the volume of the unit cell and V denotes the total volume of the entire

composite material, then

V,=V;+Vwm and V=V+Vi=V;+Vn+V, (107)

6.3 Applied, Homogenized and Volume Averaged Increments

At this point it is important to emphasize the following distinctions. First, the strain incre-

ment applied to the composite is denoted by AE?J- which causes an incremental stress response

AU?J—. To obtain the overall “effective” constitutive equation these are equated to the cor-

responding volume averaged quantities, <A51Tj> and (Aoy;). In the “effective” homogenized
medium all quantities are denoted with overbars.
At any point r the appropriate constitutive relation is

Acij(r) = Dij(r) (Aeh(r) — Ack(r)) (108)
If we volume average this relation over the unit cell we obtain
(Aoy;) = <Dz‘jk1A€{1> ~ (Dyjrdexr) (109)
In the homogenized phase the constitutive relation can be written as
Aoy = _ﬁijklzgz; ~ Dijuley (110)
Since the strain increment A—e,z; in the homogenized phase must correspond to the applied

strain increment Ae),— as in equation 103—-and the homogenized stress increment Ao;; must

correspond to the overall bulk stress increment Aa?j, we write the constitutive relation for

the homogenized phase as - o
Ao} = Dijuley — DigAey (111)
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6.4 Requirement for Self-Consistency

For self-consistency we require that the volume average of the microscopic constitutive relation
in equation 108 over the unit cell, viz. equation 109, should correspond to the constitutive
relation for the overall “effective” homogenized medium in equation 111. That is,

AU% = <DijlclA5£l> — (DijuAck) = Dyjruey, — Dijulcn (112)

for self-consistency. Under the approximation that the strain increments Ael; and Acy, are
spatially constant in the constituent phases, we obtain

1 — _
Adky = = / / / Dijia(r) (Dely(r) — Acy(r)) dV (r) = Dijulely — DiuBen (113)
c V.

or
0 Vi f T Vin om T
ii = xs ikl ki - ki E ikl ki - ki
A% = v (Aefi(f) = Acu(f)) + 7 (Aef(m) — Aci(m))
= Dijuley; — DijlAcy (114)

At this point the elasticity tensor l—),-jkl and the deviation strain increment Acy; in the homoge-
nized medium are unknown quantities. In the next section we will solve the integral equations
for the total strain increments in the fiber and matrix phases, Aef;(f) and Aef,(m), and we
will find that these values depend on the quantities D,;i;, Ae?, and Acy in the surrounding
homogenized medium. Then, by equating the coefficients of Ae), on both sides of equa-
tion 114 we obtain a relationship for the unknown elasticity tensor Eijkl of the “effective”
homogenized medium. The value of the unknown deviation strain increment Acy; in the ho-
mogenized medium can then be obtained by equating the terms independent of A&, on the
left hand side of equation 114 to the corresponding term —lj,-jk,ﬁ_ckl on the right hand side.

We now obtain the total strain increments Aef;(f) and Ael (m) in the two phases of the
unit cell. First, consider the total strain increment in the fiber phase.

6.5 Total Strain Increment in Fiber Phase

Equation 93 can be volume averaged over the fiber phase to give
1 1 —
- / / AcT(r)dV () = Ael, + = / / dv (r) / / / Uy (r — 1) D Aer, (') dV(r) - (115)
Py oy v
1 1

where the field points r are in the fiber volume, V, and the integration points r’ are in all
three volume phases (V = V; + V,, + V;). Equation 115 can be written as

A () = ad+ g | [ffave)] [[[Vite =) Dunter, () avie) +
Vi Vi

4 [[[Uia (0 = ¥) Duarsres, (m) aV () + [[[Usa (v = ¥) DiansBersav () § | (116)
Vi V.,
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in which Dy;,,Ae”, (r') has been replaced by

DiureDél, (f) = Dutracra(f) — 6D, [AT(F) — Acro(f)] (117)
and
Diurs ety () = Dytralicry(m) — 8D, [ AL, (m) — Acys(m))] (118)

in the respective fiber and matrix phases, and by
EI‘:lr‘sZM'f:g('s) = ElclrsA_Crs (119)

in the smeared out “effective” medium where 6Dy, (r') = 0.
In the first integral in equation 116 the field point r lies in the volume V%, and since

///Uijkl (r — ') dV(r') Diirs = Sijrs (120)
v

is Eshelby’s tensor (¢f Appendix E, equation E.1 and [35]), which is a constant tensor
independent of r when the field point r lies within the cylindrical volume V included in an
infinite medium with elasticity tensor Dy,.,, we may write the first integral as

J[[Vint (£ = 1) V(&) DiariBety () = Siralrety(F) (121)
Vi

The second volume integral extends over the volume V,, = V_, —V; of the matrix phase. Thus,
for the second integral,

[ te =) @V () D )

= ///Uijkl (r — 1) dV(r') DuypsAer( ///Uukl (r — 1) dV(r') DurAe;,(m)
= S‘:;TSAs:s(m) SijrsAer(m) =0 (122)

since the field point r lies in the cylindrical volume V; and therefore within the cylindrical

volume V..
We now have to deal with the last integral in equation 116. This integral can be written

as

///Uijkl (r — ') dV(r') DyysAcys

0 0Gy I'—r) 33ij(r—r’) R —
///2 (81] 8[’1 + axz axl dV(I‘ ) Dkl?‘SAc’rs

. 88G1k I‘—I‘) 86ij(r—r’) "= —_—
/// ( " om0 om AV(r) DiarsAcrs
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which can be transformed via Gauss’ divergence theorem into two surface integrals: one over
the outer “infinite” surface S of the smeared out “effective” medium; and the other over the
inner surface of the “effective” medium, i.e., over the surface S, of the unit periodic cell. The
volume integral then takes the form,

///Uijkl (r — 1) dV(r') DiarsAcrs

- QGLC(L‘L) « oy 0Gik (r — 1) e
// ( oz, +n; (I' ) 1) dS(r ) DysAcys +

8G1k (I‘ —r ) ./ 1 ank (I‘ — I‘I) PR J—
+ // ( 02:1 + n; (I‘ ) 8$1 dS(I‘ ) DklrsAc'rs

where 1} (r’) is a unit normal vector at point r’ on the surfaces pointing away from the volume
Vs. Now since the field point r lies in the fiber and the integration points r’ on the surface S
are infinitely removed, we have 3G (r — r')/0z; — 0 on the outer surface S of the composite,
and the first surface integral can be neglected. If we write n; (r') = —n} (r'), then n; (r') is a
unit normal vector pointing away from the volume V. on the surface S. of the unit cell, and

we have, via Gauss’ divergence theorem and equations 77 and 83,
/ [V (x = ¥') @V (+') Duars B,

8G1k(r—r) oy 0G (r=T1') R
// (nf o (1) TR ) 4S() D e,

_ ///2< 0 3sz8r—r) +im;r_>> 4V (') e B,

z ox; oz

O*Gu (r —1') Gy (r —1') -
- ! rsA ]
///2 ( Oz ;0x, + Ox;0x dV(r') DyirsAc
= —///Uijkl (I‘ — I'/) dV(I‘/) _EHTSZ_C,S
Ve
Since the field point r lies in the cylindrical volume V,, the preceding equation takes the form,

J[Vins (8 =x) aV &) Durs By = = [[[Uig (= ¥') @V (') Dy Bty
Vs Ve

or

///Uijkl (I' - I',) dV(I'/) ﬁklrszzrs = —SijrsE'rs (123)
Ve

where S, is Eshelby’s tensor for a cylinder with elasticity tensor D-ijkl.
From equations 116, 121, 122 and 123 we obtain

AeT(f) = A + — /// SurAty(f) = SijnsBiir} dV (r)
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and since the quantity within the braces is a constant tensor,
AEL(f) = Aely + Syjrs (DBer,(f) = Bery) (124)

Now
EleSAE:S (f) = EIclrsAcrs(f) 6Dklrs [Aez;(f) - Acrs(f)]

so that B
Aty (f) = () = Dripg 8D [Aea(f) = Acma(f)]

and on substitution into equation 124 we obtain,
Aeu(f) A5 + Sijrs (Acrs(f) — Acs - D,, 6D;{qmn [A mn () — Acmn(f)D

Given that
Liji = 3 (06t + 6;x64)

denotes the fourth rank identity tensor for symmetric second rank tensors, the preceding
equation can be written as

[Figmns + SiiraDyapg 6 Dlun] Ak (f) = Al +

+ Sijrs (Acrs(f) AQ s) + Sz]rsDrqu 6D£qmnAcmn(f)
which, by premultiplying each side with the inverse of the tensor in square brackets, gives
-1 I
AE;'T]‘ (f) = [Iz]mn + Sijr.sD 6Dgf)qmn} {A&‘?nn + Sm'm‘s (Acrs(f) - Acrs) +
+ Smnleklpq 5Df Acrs(f)} (125)

pgars

The phase volume averaged stress increment in the fiber is then given by the relation

Aoyi(f) = Dl (Ach(f) — Acu(f)) (126)

6.6 Total Strain Increment in Matrix Phase

Now consider a field point r in the matrix phase. From equation 93 we may write

Aefy(r) = Al + / / / Ugja (v — ') dV (t') Dyps Al (f) +
+///Uukz (r = 1) dV(r') DrsAct, (m +///U,Jk, (r = ') dV (') DirsBcrs  (127)

Vom

Since V,,, = V. — V¥, the second integral can be written as

././/U'"'J""’[ (r —1') AV (r') Dyrs Qe ()
Vi

= [V (e = 2) V() Dururetym) - [[[Uiax = ¥) aV () Duaradeiym) — (128)
Vi 7
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and from equation 123 the last integral in equation 127 may be written as
///Uijkl (I‘ — I‘/) dV(I‘I) -D—klrsErs = _///Uijkl (I‘ — I") dV(I”) —ﬁkac—rs (129)
A Ve

so that equation 127 is transformed into

AcT(r) = Aely + [[[Usia (v = ') aV () Dy (A3,(f) = Aciy(m)) +
Vi
+ / / / Uit (r — ') AV (t') Diars (Dl (m) — Bcy ) (130)
Ve

Averaging equation 130 over the matrix phase gives

AT (m) = A, *V; // dv (r) { JJ[Vin & =¥ aV () Durs (Ae1,(F) - e, (m)) +

+ ///Uijkl (I‘ - I‘l) dV(I‘I) -Eklrs (AE:s(m) - KE,«S)} (131)
Ve
or, since V,, =V, — Vj,
Ael(m) = Ae, +

o 0t ) 0P (- o)
= J[[av ) [[[ Vi (0 = x) 4V (&) Durs (Acta(1) — At () -

// dv(r) /// Uignt (x = 1) AV (t') Diars (A2 (£) — Acty(m)) +

~J[[av e [[[ Vi (e =¥ V') Duss (A3, ) ~ Ber) (132
vy V.

Now consider the first integral in equation 132. We may interchange the order of the

volume integrals so that

// v ( r)///U”kl (r—r') dV (' // dv (r ///UUH r—r) dV(r) (133)

Now r and r’ are dummy integration variables, so that on the right hand side of equation 133
the variables may be replaced with the integration variables x and y, viz.,

// v (r ///U,]“ (r — 1) dV (') // dv(y ///U”k, x—y)dV(x)  (134)
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But, from equation F.5 of Appendix F,
Uijrt (x = y) = Uijna (y — %)

so that
// v (r ///U”kl r—r') dV(r // dv(y ///U,J,C, x) dV(x)  (135)

and the dummy variables y and x may be replaced with the variables r and r’ to give

// v (r ///ka, r—r) dV(r // v (r ///Umkl(r——r av(r)  (136)

This relationship is discussed in Mura’s book ([24], page 336) where it appears under the
heading of the Tanaka-Mori theorem.

From equation 136, the first integral in equation 132 is integrated over the field points r
within the cylindrical volume V}. Since these field points lie within the cylindrical integration
volume V,, the first integral in equation 132 may be written as

%; / / / v (r) / / / Usjea (r = t') V(') Diars (A2 (f) — A, (m))
v A

= Vlm ///Sijrs (A‘E:s(f) - Ae:s(m)) dV (r) |

—“//fsw (Aes,(f) — Aet,(m) (137)

In the second integral in equation 132 the field points r lie within the cylindrical volume V,
and so the second integral may be written as

Vlm // dv(r)///Uijkl (r —1') dV(r') Dyirs (As:s(m) — A_c”>

_ _‘717; / [ / Sirs (A€l (m) — Bcy,) dV (r)
Ve

= %Siﬂs (Ae:s(m) - _A—er) (138)

In the third integral the field points r lie within the cylindrical volume V; and so

// av(r) ///U,Ju (r = 1) AV(¥') Dire (Al (f) — Act,(m))

Vin
Vm /// Sijrs Agrs AE:s(m)) dV (r)

= LS (B2 ) — Bty (m) (139)
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Finally, in the fourth volume integral, the field points r lie in the cylindrical volume V5.
Since this lies within the cylindrical integration volume V,, we have

v [V @ [[[ Ui e =) @V ) Du (3, m) - B2r)
Vy Ve
- [l s (aciom - 32c) avee

V _
=1L 77 Sirs (A&t (m) - Ac,,) (140)
We thus obtain from equations 132, and 137 to 140,

A€T(m) = AE Vf Snrs <A€ (f) - As:s(m)) +

“ i+ Vin
+%S,,“ (Aer,(m) - Bey,) -
= 7 Sun (Ber, () = et (m) -
— S (Bt (m) - Be)
= AL+ VVmesms (Aer(m) - Be,)
) AT (m) = A, + Sy (et (m) - B55,) (141

This relation for the total strain increment in the matrix phase is similar to that for the fiber
phase given in equation 124. By following the steps leading to equation 125 the expression
for Ael,(m) can be put in the form

-1 _
AEg(m) = [ ymn + SUTSDrqu 6D;;L]mn} {Aé‘?nn + Smnrs (Acrs(m) - Acrs) +
+ Skt Dggpg 6 Dy Ay (1) } (142)

The phase volume average stress increment in the matrix is then given by the relation

Acyj(m) = Dy (Aek(m) — Ack(m)) (143)

6.7 Overall “Effective” Constitutive Relation

As stated in section 6.4, for self-consistency we require that the volume average of the con-
strained micromechanical constitutive relation over the unit periodic cell should correspond
to that for the “effective” homogenized medium. From equation 114 we require that

1% Vin
Adly = DL (Ah(f) = Acu(f) + 37 Dl (Aeiy(m) = Acw(m)
= l]klAEkl - Equ_A_Ckz (144)



where the total strain increments in the fiber and matrix phases are given by equations 125
and 142 as

ASH(f) = [Lyjmn + SijraDyopg 6Dhnn] { Dl + Smanrs (Bcralf) — Bieye) +

ij rspq

+ Spnkt Diipg 0 Dipry s N} (145)

and
T m -1 0 A~
Agij (m) = [ ijmn + SUT-?Drqu 5qumn] {AEmn + S"""‘S (ACTS(m) - Ac"'s) +
+ Skt Dyipg 6Dy A (m) } (146)

pgrs

with the deviation strain increments defined in equations 97, 101, 105 as

Acij(f) = Ael(f) + of AT (147)
Ac;j(m) = Asf;(m) + ai"AT (148)

and
Aiy; = Dey, +ajAT (149)

By inserting equations 90, 91, 145, 146 147, 148 and 149 into equation 144 the relationship
for self-consistency requires that

Ao}, = Ajuley — {Aijklsklrszzri — Bijrs Al (f) — CijrsAs,i(m)} -
- {Aijleklrsa:s - Bijrsa:£ - Cz]rsa:;n} AT

= Dijulel — Dyubiey — Dy, AT (150)
in which
Aij = ?Dms [ rskl S’rququmn (Dmnkl ﬁmnkl)]—l +
+ VVCD:;;S [Fratt + SvepaDipgmn (Dtatt = Drit)] (151)
Biju = “?Dms [ rskl + Srququmn (D,fn"gh Emngh)]—l X
X |Sonkt + Synab Daped ( Dlags = Deart)| — %Difjkl (152)
and
Ciju = “/;n D7 [ rski + Smqu,,qmn ( mngh — .D—mngh)]——l X
X [Sghkl + SghabD—a_bcl:d (Dgékz - Ecdlcl)} - VVT:DI;M (153)

29



These results for B;jx and Cyjp can be simplified somewhat. We write B;ji as

Vi
Biju = v, Yiikl
where
~1
Yijkt = -Difqu (Ipqrs + qurs) (Srskl + erkl) - Di’;kl
and

XPQTS = Spq771anngh5Dghrs

We then obtain
Yijkl + D;‘f]’kl = Difqu (Ipqrs + ‘X'pqrs)-_1 (S'rskl + erkl)

or
1 _
(D;CLI> (yklmn + Dilmn) = (Iijkl + Xijkl) ! (Sklum + Xkl'nm)

This result simplifies to
foy! -1
<Dz’jkl) Ykimn + Lijmn = (Lijr + Xijit) ™ (Skimn + Ximn)

which can be premultiplied by (I,q:; + Xpqij) to give
-1

(Ipqij + quij) (szjkl) Ykimn = Spqmn - Ipqmn

from which
Yijkl — szqu (Ipqrs + )(pqrs)~1 (Srskl - Irskl)

From this result we find that B;;i and Cjji; can be written in the simplified forms

1%
Biju = v

and

V,

1ipq

_ — -1
n m -1 m
Cimt = 2Dy [Toagh + Suars Do (Dimngh, = Dongn )| (Sonta = Tgni)
C

V.

— — -1
_fDifqu [Ipqgh + SPqTSDrsmn (Daj;ngh - Dmngh)] (Sghkl - Ighkl)

(159)

(160)

(161)

(162)

(163)

Equating the coefficients of AcY; in equation 150 for self-consistency then requires that

Dijr = Ajjn

which, from equation 151, produces the implicit relation

Disu % s [I”“ +5 "“P‘?D_p_q:nn (Drfnnkl - _Dmnktﬂ_l +
+- %D,’-}‘rs [I,.,.M + SrsDpemn ( m o= Emn,d)] -

(164)

(165)

The value of homogenized “effective” elasticity tensor bi]-kl may be obtained from this im-
plicit relationship by iteration. Naturally, when the self-consistent method is embedded in a
noulinear finite element program, this iteration would be done outside of the code and the

explicit values of D, 4, would be used in the program.
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For self-consistency we also require from equation 150 that

Aijpa Syt Bty — Bimel(f) — Cigmdely(m) = Dby, (166)

" AiipgSpari®iy — BijnAag] — CyuBoq™ = Dijudy) (167)
which. by setting A;jp, = Dijpe, reduce to

A—einD = [Eiqu (Spgrs = Ipqrs):| B (BrsklA€Z(f) + Crsszfﬁ(m)) (168)

" a5 = [Dijpg (Spars — Lpars)] (Brawaet] + Cranel”) (169)

The overall “effective” constitutive relation for the homogenized composite in equation 150
is now easily computed.

If a forward difference algorithm is used to evaluate the viscoplastic strain increments,
the only implicit equation which occurs in the formulation is that for the elasticity tensor
of the homogenized medium given in equation 165. It is, perhaps, ironic that in deriving
the highly nonlinear viscoplastic constitutive relationship for the homogenized medium, the
only iterative procedure required is that for the elasticity tensor. This implicit elasticity
relationship also occurs in the subvolume method due to the occurrence of the tensor 6D,
in the volume integration. The implicit nature of Eijkl is due to the fact that the homogenized
elasticity tensor is found by volume averaging the constrained elastic properties of the unit
periodic cell, and these constrained properties, in turn, depend on the elasticity tensor D,
of the homogenized constraining medium. ’

The constitutive relations given in equations 126 and 143 are used to update the stress-
strain history in the constituent phases, whilst equation 150 is used to update the stress-strain
history in the homogenized self-consistent medium. These relations, which contain AEI-TJ-( f),
AEZ-Tj(m) and D, depend on the Eshelby tensor S;jrs for the homogeneous smeared out
medium. which is defined in equation 123 as

Sijrs = ///Ui‘jkl (r — I'/) dV(rI) Dyrs (170)
‘/

when the field point r lies within the cylindrical volume, V. The “effective” homogeneous
smeared out medium for a composite with cylindrical fibers will exhibit transverse isotropy if
the fibers are arranged in hexagonal arrays, and it is shown in Appendix E that the Eshelby
tensor for a transversely isotropic cylinder, whose x3 cylindrical axis is normal to the plane
of transverse isotropy, has the component form,

5D111 + Doz
S = v 171
1111 S (171)
Sz = St (172)
S = 3Duz = D (173)
8D
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D1133 (174)

S. = —
2233 5D,
Sty = Saoss (175)
Soomr = Sua (176)
3Dy — D
S1212 = St = 1181%1111 B (177)
Se3zs = Sasse = Siais = Sum = § (178)

with all other S;;x = 0. If the fibers are arranged in tetragonal arrays, the Eshelby tensor
will exhibit tetragonal symmetry. This case is currently being worked out.

7 Integration of Self-Consistent Model

Fourth rank tensors can be written in Voigt notation as matrices and second rank tensors as
vectors. (¢f. Appendix 2 of Mura’s book, [24]). For example, with the notational changes,

Aoy = Aoy, Aoy = Aoy, Aoy = Aoy, Aoy = Aoy, Aoy = Aoz, Aog = Aoy
and
AS] = AE“, AEQ = AEQQ, A€3 = AE33, A€4 = 2A623, A85 = 2A€13, AEﬁ = 2A€12

Hooke's law for an isotropic elastic medium can be written as

AO’l ) [ A+ 2“ A A 0 0 07 ¢ A€1 )
AO’Q A A + 2,U A 0 0O AE2
Aoy | | A A A+2u 0 0 0] Ae
AO’5 0 0 0 0 12 0 AE5
Aoy | 0 0 0 0 0 p | | Asgg

For a transversely isotropic medium—-such as the smeared out “effective” matrix for hexagonal
fiber arrays - the relationship can be written as

[ Diii Dise Diss 0 0 0

A = = = Ae; )
Ag.l 91122 21111 91133 O 0 0 Ail
AO"Z D1133 D1133 D3333 _O 0 O A82
AUJ - 0 0 0 Dy 0 0 A 3 (180)
AU*‘ 0 0 0 0 D 0 AZ‘*

5 D e Do 5
AU(; 0 0 0 0 0 (—ﬁ’IQ—DQ?_Z> \ AE(i

from which the isotropic 1‘0sul_ts can be recovered by taking Dy, = 2uv(l — v)/(1 — 2v).
Dogs = 2u(1 — 1) /(1 = 2v). Do = 2uv/(1 — 2v), Dz = 2pv/(1 — 2v), and Dy = 1.
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The Eshelby tensor [35] relates the constrained strain increment, Aef;, in an inclusion
which undergoes a transformation or cigenstrain increment, Aej,, in an infinite medium with
clasticity tensor Djjy, in the form

Aé‘;j = ijﬂA&L (181)

In Voigt notation we have
Aef = S;;Ac;

where the Eshelby matrix takes the form,

5-D—ll]l + 31122 3D—1122 - ﬁ1]11 E1133 O U 0
8D 111 8D11n 2D1111

351122 - D—llll 5—D_1111 _" —D—1122 51133 0 0 O
8D“11 8D1111 2D1111

(Sij] =
0 0 0 0 0 0
0 0 0 2 (1) 0 0
4 1
0 0 0 0 2 (Z) 0
3—D_1111 - _D—ll22>
0 0 0 0 2 —
( 8D1111

) (182)

The integration of the self-consistent model then proceeds as follows.

1. Initialize the starting variables: time ¢t = 0; temperature T = Tp; overall
“effective” stress and strain 0¥ = ¢? = /" = 0 for i = 1 to 6; stress and strain in the
respective phases o;(f) = £7(f) = €P(f) = 0, and o;(m) = el (m) =&/ (m) =0
for i = 1 to 6; equilibrium stress in the respective phases ;(f) = Q;(m) = 0 for
i = 1 to 6; drag stress in the respective phases K(f) = Ko(f) and K(m) = Ky(m).

2. Compute the overall “effective” elasticity matrix iteratively from the relation

-E,’-J- = Y‘/TiDzjk {(‘)}j + Sklﬁl;zl (DTf"j - Emj)]—l +
+ %L I’;‘I {&U + SI»;lD—l;zl (Dzj - Emj)]_l

where &, is the Kronecker delta matrix, é;; = 1 for k = j and &; = 0 for k # J,
and the Eshelby matrix S;; is given in equation 182.

3. Start the loading history step. Evaluate the inelastic strain and state vari-
able increments in the fiber and matrix phases from the unified viscoplastic con-
stitutive relations. Any unified viscoplastic model may be used. Such relations
may have the following form:
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In the fiber the inelastic strain increment is

() — u(f) ) V3 (350 = 2(0) (35a(0) — (1)
K() K(f)

where the equilibrium or back stress increment is calculated from the relation
AQ(f) = of Al (f) — o \/3AR (N AR () (f)
for i = 1 to 6, and the drag stress increment from
AK(f) = [of — of (K(f) = Ko(f))] V2AeL()Ael (f)

In the matrix a similar set of constitutive relations can be used, so that

(st ugm) |3 (Bsalm) = 0(0) (3sa(m) - 2 (m) [
Aei(m) = ( K(m) ) K(m)

AQ,(m) = o™ Ael( '”\/AEP YAel (m) Q;(m)
for i =1 to 6, and
AK(m) = [y — of* (K(m) — Ko(m))] \/2AeF (m)Acl (m)

The quantities n/, n™, of, o, for p = 1 to 4, are material constants associated
with the unified viscoplastic constitutive relations.
The deviatoric stress in the fiber phase is defined by

si(f) = ailf) = 3 (an(f) + oo(f) + 05(f))  for  i=1,2,3

nf-1

A<P(f) = (

and
si(f) =0i(f)  for  i=4,5,6.
Similar relations apply to the matrix phase, viz., -
si(m) = o;(m) — 1; ((71(m) + oa(m) + 03(m)) for 1=1,2,3
and
si(m) = oi(m) for i =4,5,6.
4. Compute the “effective” inelastic and thermal strain increments from the
relations R .
Ae, = [Diy(Sp— Lg)] (Bl (f) + Cplref (m))
and

;AT = [Diy(Sp — I)] (B + Cpof™) AT

where
1

By = “?D,{, (6 + SimDon (Dh, = Dup)| (Spr — 6t

and

Cor = Y D3 (8 + 80D (D2 = D) ] (S — 60
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5. Evaluate the deviation strain increments from the relations

Acy(f) = AeP(f) + o} AT
Acy,(m) = Aef(m) + ;" AT
and
Ac, = Ae, +a;AT

6. Evaluate the phase volume averaged total strain increments

Al (f) = [%‘ + 85D, (ng - qu)}—l {Ae;? +
+ 8jq (Acy(f) = Bey) + SipDyy (Df, — Dgr) Acc(f)}
and
Aef(m) = [6;+5S,D,, (Dm D,)]" {As‘? +

+ 8jg (Dcg(m) — Be,) + SjpDyg (Dt — Dar) Aer(m)}

7. Calculate the stress increments in the fiber and matrix phases from the

relations

Aoi(f) = DY (Ael(£) — Aci(f))

and
Acy(m) = D (AeT(m) — Ac;(m))

8. Compute the overall “effective” stress increment from the relation
Ao? = D; (Al - Ae] —a;AT)

9. Update the variables:

oi (f,it+At) = oi(f,t) + Doi(f)
o, (m,t+ At) = o;(m,t) + Aci(m)
Q; (f,t+ At) Qi (f,t) + A8u(S)
Q (m,t+ At) = Q;(m,t) + AQ;(m)
K (f,t+At) = K(f,t)+AK(f)
K(m,t+At) = K (m,t)+ AK(m)
el (fit+At) = & (£,8) + A8 ()
eP (m t+At) = e (m,t)+ Ael(m)
el (fit+Al) = & (f,t)+ el (f)
(m t+At) = e (m,t)+ Ael(m)
ad(t+At) = o%(t)+ Ad?
9t 4+ At) = €2(t) + Ae?
T(t+ At) T(t)+ AT

10. Start new load step.
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8 Subvolume Method

8.1 Approximate Integration of Integral Equations

The determination of the stress and strain increments throughout the composite material
requires the solution of the integral equations

Dy leg(r) = D;;k,Acm) ~ 6Djju(r) [Aeh — Acu(r)] -
éDl]kl(r Z Z Z gklmn ///D;ans ) eff-(l‘—l") dV(r/) (183)

or

D Aeiy(r) = DijyAcu(r) = 6Diu(r) [Aeh — Acu(r)] -
~ 8Digut(x) [[[ Urtn (0 = ') DB, (7) aV(E') - (184)
Vv

at each field point r in the unit periodic cell.
Nemat-Nasser and his colleagues [25,26,27,28] have demonstrated the efficacy of dividing

the unit cell into a number of subvolumes and assuming that Ae},, (r’) is replaced by

Ay, () = Aell, = // Ac;,, () dV (¥) (185)

corresponding to its average value in the ' subvolume.
Let there be N subvolumes in the unit cell, with M subvolumes in the fiber and N — Af

subvolumes in the matrix. Then the preceding integral equations can be written as

D Aci(r) = DiyAck(r) = 6Diu(r) [Aey, — Acu(r)] -

N
D) Y g (TS | [[[e 7 avie) | DRt (186)
I B=1 Vv,

np=0
and
DI Ack(r) = DpgAc(r) = 8Diju(r) [Ack — Acy(r)] -
- 6D1/1\[ Z Z ///l]“nm r—r ) dV( ) D;"r’;nrsAE:f (]‘87)
q=1 =1 ‘“

where V;, denotes the 3™ subvolume in the ¢'" unit periodic cell, and it is assumed that the
field point r is in the first periodic cell for which g = 1.
These equations can be volume averaged over the o' subvolume in the unit periodic cell

to give
Y L XA m ¥ 0 ¥ «

I o X
% 1 33 3 g /// avi) | g e e ave) | D (s
c np-() ”

13:=1 ‘/ﬂ
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and

uszE = DijuAcy — 6D [A‘?gz - AC?I] -
- 6D8, Y / [[avir) / [Vt (0 = ¥y av () | D, B2 (189)
q=1 ‘} 1

Visg

In these equations the deviation strain increments Acy, are evaluated from the unified
viscoplastic constitutive relation for the o' subvolume based on the stress value of(f) or
o(m) in the subvolume, according as the o' subvolume is in the fiber or the matrix phase,
respectively. The notation §Df;, also denotes the value of Dijk, — D7, or 0 according as the
a™ subvolume is in the fiber or matrix phase, respectively.

If we use Nemat-Nasser's notation and write

— Via JJf<¢ av i (190)
Va

jo=32 (191)

and denote

as the volume fraction of the a'® subvolume, then the preceding equations may be written as

N +00
n o ! m a *
Z 'D:]Tsé g + 6D1Jkl Z Z Z Gklinn ( DmnrefﬁQ (&) Qﬁ (-g) AE.,.E
#=1 ny=0
= Dg‘luACkl éD:sz {Afgl - AC;:I] (192)

and

N
) D;;'Mé"uw';k,z // v (x) [ [ [ Uitn (6 = ¥) aV (&) | Dty | A3

.111 V[jq
= D Acy — D5, [Aeh, - Acg,] (193)
where 6" = 1 if o = 3 and 6*° = 0 if & # 3, and no sums on «, 3 are intended unless
explicitly stated.
Now 6 Dfj;, = 0 if the o™ subvolume resides in the matrix. In this case equations 188 and
189 show that
Aei' = Ay, for M<a<N (194)
Thus. only M unknowns (associated with the subvolumes in the fiber) are involved in Ae*?
and the N — M known quantities (associated with the subvolumes in the matrix) given by
cquation 194 may be taken over to the right hand side of the equations. Equations 192 and

193 mayv therefore be written in the form
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M.
Djj, 0" + 8D 3 Z S~ Gutnn (€) Dy /'Q (£) Q7 (=€) | Ayt
B=1
= ngzAsz - 6Diajlcl [Askl - Acm -
Fo0
S DY Y 5 G (O) D Q" (€ (—8) AL, (195)
B=M+1 np=0
and
Af
S | D 6f + 5DW / / v (r / / Usimn (£ — 1) dV(¢') | D™ | Ae®P
4= Vsq
= DijuAcy, — 6Dy [Agkl - Ackl] -
Z ww ( / / v (r / / Ukt (r — 1) dV/(r )) D™ A (196)
B=M+1 Vi
fora=1to M.
By defining the fourth rank tensor Af;/:q and the second rank tensor b% in the Fourier

series representation as

+oo
kl Z Z ZI Gklmn ( mnrsfﬁQu (5) Qﬁ (_6) (197)

np=0

Aaﬁ Dm 60[3+5Da

ijrs ijrs i

and

b% = Dz?;'lklAc‘Izl - 6D?jkl [A&'gl — Ac'zl] —

Y D5 S g (O) D Q7 (€) O (—E) AL, (198)

B=M+1 np=0

or, in the Green’s function representation, as
b] b

A;)llt = Dln]lr 66(1” + 6D(Ylkl Z (‘/ ///dL/ ///Uklmn I' —-r dV( )) D;r)lnre (199)

and

b = DIyAcy - 6D;;k, [Ael, — Acyy| -
1
.S 6D,JA, = [[[av ) [ [ [Omn (£ = 1) aviw'y | Di,.6 (200)
A=Al =\ Ve Vig
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the integral equations can be cast in the form,
M
ST AL A =b2 for a=1toM (201)

jrs
B=1

In Voigt notation the fourth rank tensor Ag}fs can be written as a matrix quﬁ , and the
second rank tensors Ae}? and b can be written as vectors Ag}? and b3, so that

M
Y AYAe =b0  fora=1toM (202)
g=1

This represents a system of 6M linear equations for the unknown values Asgﬂ, each matrix
element a3 of the matrix A consisting of a 6 x 6 submatrix, in the form

r [Ap] -0 e e [A1pm] ] ( {Ae*l} \ ( {bl}
[Ay] -+ - o [Aam] {Ae*?} b2}
[Ang] - : J {Ae.:*ﬁ} (=) {bﬁ} (203)
] [A;m] [Al\.ll\I]_j {AE*M} ) \ {b“} J

where the submatrix elements are defined as

8 8 8 7
[AY AY AY AW AN AT
Af;lz A;‘QZ A;@Z Agj; Aggﬁ’ A;’GZ
A3y Ay Ay Asp Ags Agg

Ty
Asi A5y Ay Asi A Agg
| AF AR A AT AN AT
and the corresponding column vectors as
( Aet? (b))
AE;Z bg
{Ae*“} = 22}; and {bﬂ} = < 24% r (205)
Aet’ by
Ay’ [ b

This system can be solved by standard Gaussian elimination. However, if Al subvolumes
are included in the fiber, these equations represent a 6 M system of equations, whose solution
may pose storage problems on the computer.
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8.2 Solution of Integral Equations by Iteration

An alternative is to use equations 188 and 189 in an iterative fashion. As a first guess the
integral terms in 188 and 189 can be neglected and we obtain

D7 Aei? = DIy Ack — 6DG (Al — Acgy]  for  a=1toM
corresponding to the subvolumes in the fiber, and
ey = Dl Ack for a=M+1toN

corresponding to the subvolumes in the matrix. These relations can then be substituted
into the integral terms to yield an improved “Rayleigh-Born” approximation to D7}, Aeg* for
a =1 to N. This process can then be repeated until D7, Aei/* converges to within a user
specified tolerance. In essence we solve the equations

Z‘lkz {Agm} = DijuQcy — 0Dy [Afgz - AC(}Q} -

— Z 8D S Z S Gotmn () D FQ7 (€) Q° (—8) { AP
A

1p=0

+oo
Z 6Dljkl Z Z Z Gkimn ( D:;Llnrsflan (5) QIB (_5) Acfs (206)

s=M+1 np=0

or

m * (¥ m « 0 a
ijkl {AEM }/\+1 = Dijudcy — 6Djy, [Afkl - Ackl] -

—ZéD”klil ///dv ) [ [ [Vstmn (2 = ¥') @V (') | Dy, { D632},

Vg

Z wukl // dv (r) / / /U,dmn —)dv(r) | D" AL (207)

B=M+1 Vi,

until the (A + 1)ch iterate differs insignificantly from the \*" iterate.

In the solution of the composite problem, two constituent phases, namely the fiber and
matrix phases, have been considered. For composites with a third chemically degrading phase
separating the fiber from the matrix, the preceding solutions may be modified by assuming
that, in the summations from 8 = 1 to M, some of the subvolumes, say from § = L to
M, pertain to the degraded material. It will then be necessary to postulate a viscoplastic
constitutive relation for this chemically degrading phase.

The total strain increment in the o'* subvolume in the unit cell is then obtained by
averaging equations 57 and 80 over the a'" subvolume to give,

AEL" — ‘+‘ Z Z Z Z (JI\[mu ngn (5) Qﬂ (“6) mnrsAg*ﬁ
n,=0
Y Y S i () F7Q7 (€)@ (—) Dl A, (208)
S M4 ny, =0
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or

A oo
AcTe = Aagl+§: Z // v (r / / Ui (£ — ¥') dV(r') | D Ae?? +

DS // av (r) / / Uktnn (£ — 1) dV (') | DR A (209)

g:M+1 =1

L~

fora=1to N.
The constitutive relation, required to update the stress and state variables in each sub-
volume, is then given for the a'" subvolume as the average of equation 35 in the form,

Aot = Dy (Aefy — Aek?) (210)

If we assume that N = 2, with one subvolume in the fiber and the other in the matrix,
then the theory is similar to the self-consistent model in which the strain increments in
the constituent phases are assumed to be spatially constant and equal to their respective
constituent volume averages. However, the interaction effects of the nearest neighboring
cells are fully accounted for since geometric periodicity is assumed in the integral equation
formulation and the material outside the unit cell has not been smeared into an “effective”
uniform material.

In both the Fourier series and the Green’s function formulations integrals of the form

/ / / ¢ KT 4V (r) (211)

need to be evaluated over the subvolume, V,. These Laue interference integrals [39] can be
evaluated exactly if each subvolume consists of a circular or oblong cylinder. In the case of a
circular cylindrical fiber, each subvolume within the fiber would consist of an infinite cylinder
with a cross-section in the shape of an element of area in cylindrical coordinates, comprised
of two circular arcs with constant radii, r; and r,, and two radial segments along the lines
of constant 8, and 6,. An attempt will be made to evaluate equation 211 for this type of
cross-section. If this proves too unwieldy, the subvolumes within the cylindrical fiber can
be taken to be cylinders themselves, with the cylindrical fiber represented as a “bundle of
sticks”. We assume that the actual fiber is comprised of subvolumes of the correct shape, but
we make an approximation in performing the volume integration over a circular cylindrical
subvolume.

9 Concluding Remarks

This document is the first annual report on NASA Grant NAG3-882. Much of the work on
which this report is based exists only as a mélange in the literature and we have therefore
attempted to write the report in enough mathematical detail that it can be worked through
without reference to the literature. In the second year we shall work out the required integrals
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in the formulations and program the methods in FORTRAN subroutines suitable for inclu-
sion in nonlinear finite element programs. In the third year we will determine the material
constants for various composite materials and provide a comparison of the present theory
with finite element and experimental results.

Our aim is to produce an end product which can be used in nonlinear finite element
and boundary element programs for analyzing the structural behavior of composite materials
under thermomechanical loading conditions at elevated temperature.

The viscoplastic behavior of periodic composites is analyzed by means of implicit integral
equations. These integral equations arise when the problem of determining the stress-strain
variation throughout a unit periodic cell in the periodic composite is solved by a Fourier
series or Green’s function approach. In this report we show that the Fourier series and
Green’s function approaches are mathematically equivalent by means of the Poisson sum
formula. By applying simplifying assumptions the integral equations can be solved in an
approximate fashion and used in structural analysis programs to analyze the overall behavior
of the composite. When the strain-temperature history at the “damage critical” location
has been determined from the structural analysis, this can be used to “drive” the “exact”
integral equations to determine the stress-strain history variation throughout a unit periodic
cell located at the critical location.

The unit cell in the periodic structure can be formulated to analyze fibrous, laminated
and particulate composites. By retaining the effects due to the application of displacements
and tractions at the surface of the composite it is also possible to analyze the behavior of thin
walled composite sections such as are found in turbine engine combustor liners and blades.
When this is done the integral equations which must be solved are basically those which are
used in boundary element programs. In the constitutive subroutine which we plan to embed
in the nonlinear finite element program to analyze the overall macroscopic behavior of the
composite, we effectively have a boundary element equation (specialized for the case of a
periodic composite) which we solve in an approximate fashion for the stress at the Gaussian
integration point when the boundary displacement on the element is prescribed by the finite
element program.

When the effects of damage are included in the constitutive formulations it will be possible
to embed the subroutine in an optimization program such as ADS in order to determine

optimum composite configurations.
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Appendix A

Properties of the Green’s Function

Consider a point force fi (r') acting at the point r’ in an infinite medium with elasticity tensor
D;jxi. From the definition of the Green’s function the displacement at the field point r due

to the point force f (r') at r’ is

ul(r) = Gij (I' — l'l) fj (l',) (A].)
so that the infinitesimal strain at r is
. 1 8Gl] (I' - rl) 8Gm] (I‘ - I',) ’
gim(r) = 5 ( . + Bz, fi () (A.2)
and the associated stress is
Okp(T) = DipimEim(T) (A.3)
7 0Gy (r ~ ')  0Gu; (r 1)
L{r—r mi (T —T ,
Ukp( ) kazm2 ( J@mm ]aCL',' ) fj (I‘) (A4)

Since the elasticity tensor Dy, is symmetric with respect to the indices 7 and m, the last
relation can be written as
BGI J (I' - I")

0T m

fi () (A.5)

Uk:p(r) = kaim,

For static equilibrium, we must have

- // ny(r)op(r) dS(r) (A.6)

where S denotes any closed surface in the infinite medium with an outward unit normal n,(r)
which surrounds the point of application of the point force fi (r'). An application of Gauss’

divergence theorem gives

/// it / / kama Cult=X) ¢ () av(r) (A7)

oz, (%cmawp
Writing
= f, (r')///(skja(r —r') dV(r) (A.8)
Js
then gives the equilibriuin requirement that
G (r—r)
///{DA,,,,,, dl’mle~ 8,6 (r — r')} dV(r) =0 (A.9)
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Since f; (r') and V are arbitrary, then

20y i
PO =) e s — ) =0 (A.10)

is the differential relation satisfied by the Green’s tensor function. When multiplied by f;,
this is just Navier’s equation of elasticity with the displacement u,(r) = G;; (r — r') f; (r') and
the body force set equal to 8 f; (r') 6 (r —r').

Rearranging the indices, this differential relation can be expressed as

= k) 4 5,6(r) =0 (A.11)

The solution to the differential equation can be found by applying Fourier integral tech-
niques. On multiplying the differential relation by e%+® dz, dx, dxs, i.e., by e®T dV(r), and
integrating over all space, we obtain

PGip(r) ixcpe [ iKye
Dwkl/// 8:1:[(;1'] R N o +6ip[Zo/5 (x1) 6 (z2) 6 (x3) X% dzy dry daxs = 0

(A.12)
From the sifting properties of the Dirac delta function the last integral is unity, so that

v 8 [0G(r) & [8G,(r)
[ (%557 P, (P57 +
d <8Gk,,(r)

—873 B.L'J

+ Dijis ) } % dg dxy dxs + 6 = 0 (A-13)

Integration by parts severally with respect to x;,z2,25 then gives

//{[ iik1€ etK1z Q(;k_l’(Q] ei(KzI'z+K3I3) dzs dzs + lDijk2eiK2I2 5ka(r):| y
8-7:] r1=-—00 8{1}1 ry=—00

0G,(r)]™
« ei(K1z1+K313) dl‘l dCEg + {Dijkseszzs _____k_’_’____] ei(K1xl+K2$2) d.’L‘l dl‘2} —
T3=—00

6:01-

T aG oG . o
- /// Diji i2(r) iK1 + Dijz i2(t) K3 + Dijis OCis(r) iKs ¢ e day dr,y das +
ij 8.’13] ij

+6,=0 (A.14)

The surface integrals are zero since 0G,(r)/Ox; vanishes at the infinite lower and upper
limits of integration, so that one integration by parts yields the result,

rr.. 0G .
- Dijkl///iKl“bﬁp-(‘r‘) e av(r) + 6, =0 (A.15)

T
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A second integration by parts yields

+ Dijkl///iZKlKijp(I‘)CiK'r dV(r) + 6;, =0 (A.16)
or )
D;jnK K;Gip(K) = b (A.17)
where o
Gip(K) = / / Grop(r) KT AV (r) (A.18)

is the Fourier integral transform of Gi,(r). By writing ¢ as a unit vector in the direction of

the wave vector K, we have
K, K;
(j=—1== ?’ (A.19)
KqKq

in which K = ,/K K, is the magnitude of the K vector. Then

K K,
Dijuge Kf K2Gip(K) = 6, (A.20)
or ~
K?D;juiGi¢iGip(K) = 63 (A.21)
The Christoffel stiffness tensor M (¢f. [33]) is defined by the relation
M (€) = DijuCis; (A.22)
so that
K*M, (C)ka( ) - 5112 (A-23)
Premultlplylng both sides by the tensor K 2M~! gives
Gy(K) = K°M;'(¢) (A.24)

The Fourier inverse of equation A.18 gives

= (21)° / /oo / e K16, (K) d°K (A.25)

where d*K = dK, dK,dKj;, so that we finally obtain the Green’s function in the Fourier

integral form
4 ]\I ,
/// WK A, (O ke (A.26)

i

with

]W-_AI(C) = (DiijCle)_l (A.27)

ij
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This representation of the Green’s function yields explicit results for isotropic and transversely
isotropic materials (c¢f. Mura’s book, [24]). For cubic and general anisotropy the Fourier
integral representation must be used.

Often, we are concerned with volume integrals of the Green’s function and its derivatives
with respect to r, such as Ugmn,(r). It is then advantageous to use the Fourier integral
representation even for isotropic and transversely isotropic materials. The advantage is gained
by reversing the order of the wave vector and volume integrations, whereby many of the
integrations can be carried out explicitly.

Sir William Thomson (Lord Kelvin) obtained an explicit form for the Green’s function of
an isotropic elastic material in 1848. As an example we may deduce the Kelvin result for the
Green’s function of an isotropic material from the Fourier integral relation. For an isotropic
material

Dijir = Mijbrr + p (bt + 6ubjn) (A.28)
and so M;(¢) = D;ji(i¢; has the form
My (€) = (MGG + oG + nGily) = (()\ + 1) + ﬂéik) (A.29)
since KA K2 o
wi=¢+G+a¢=(32) +(F) +(2) =1 (A:30)

The inverse tensor M '(¢) is given by the relation

- Oin A
Mg (€)= (A WGl + b)) = . Aigu)gck (A.31)

which is easily verified by showing that

A/Iiglek = 6ik (A32)
From the preceding relations
- bi; A+ p
., = Mo ) :
Mij My, < r WAt 2 )C1CJ) ((/\ + 1)CiCk + .uéjk)

A+ p (A + p)? (A + )
_ Cho + S — G — ; A .33
GG B = S GG T SGG = bk (A3

as required.
The Green’s function is therefore obtained in the form

161] —Kr 3 /// At u RI‘J w'Kr 3
T = ¢ e 1IN s A
Gii(r /// &K — (2r)" S i PK (A.34)
From a table of Fourier transforms (c¢f. [36]) we find that
I R |
—p///}\jEGVIKr d’K (A35)
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which may be differentiated with respect to x; and z; to give

Bm,(?:c] RS ///h o e T PK

By contracting the ¢ and j indices we obtain

8:1:,6:5] ///K2 e T aK

The Green’s function may therefore be written as

1 (8, B Atp o O
Gig(r) = (2m)3 (,u dz,0z, T+ 2#)7r Oz, 0;

() = 1 At xi“’i)
Gi(r) = 8mur {26” P +2u (6” T2

827' 2 827' 61']' I,Z;
= — and =
Oz, 0z, T O0z;0x; r r3

or

. where the relations

obtained by differentiating r = ,/T,Z,, have been used.
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Appendix B

Relationship Between Fourier Series
and Green’s Function Approaches

In the composite material the total strain increment Ae’/(r) is periodic in r and is defined

by the relationship )
Aefy(r) = A}, + Aey(r) (B.1)

where Ag), is the strain increment applied to the composite’s boundary which is equal to
the volume average of Ael (r) over the unit periodic cell, and Aey(r) is the deviation or
perturbation from the average value due to the presence of the fibers.

From equations 84 and 85 the perturbed strain increment is given in the Fourier series
and Green’s function approaches by the equivalent relations,

Aey(r Z z Z griis () // D7, Aer () e = gy (v (B.2)

or

Aey(r) = ///U,d” (r — ') DT, Ak, (r') dV (r) (B.3)

We now show that these equations are equivalent and that the Green’s function relation is
the Poisson sum transformation of the Fourier series relation.
From the definition of gim,(€) in equation 54 we may write

i (€) = § (M (©)¢G + M7 (O)¢G) (B.4)
or
i3 (G G Ga) = 3 (Mg (G1, G20 G3)6G + M (G, G2 G3)GiG) (B.5)
where
271"721‘
(= & = Li (no sum on 1) fori=1,2,3. (B.6)

§ \/ 2mng \ 2 27ns \ 2 21ng\ 2
()~ (2) + ()
L1 L2 L3
We may therefore write

gkli.i(C) = gklij(Cl (n1,n2,’n3) e (nl,nz,n3) ,C3 (nl,nz,ns)) = fklij (nl,n2, ns) (B-7)

The perturbation strain increment can then be written in the form

+oo *oo :too

Agy(r) = LLng >y Z Sriij (n1,n2,m3) ///DZ‘N N X

11=0 1ny=0 ny=0

2mng

2mn, 2mng ,
X e( L (w1 =at)+7 Lo (z2-ep)+ T~ Ly (mﬂs)) dz} dzy dxf (B.8)
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or as
too 4o

> > Z it (M1, 2, n3) (B.9)

ny=0 ny=0 nz=0

AEM(I‘

L LzL;

where

hlcl (nl,TlQ, ng) = fklz] nl,ng,ng]) ///D:?rsAgrs (I‘

2mna

raa )+ g (s0-55) dz', dzydz,  (B.10)

2mn 27rn
AT ) T

By the Poisson sum formula (cf. Morse and Feshbach’s “Theoretical Physics”, [37])

t+oo oo iOO, +oo Foo +oo L L2L3
S X Y hlmmn) = 55 Y / J PR ettt il
n1=0 no=0 n3=0 m1=0mo=0m3z=0
K\ L, Kng K3L3
h ( , , ) B.11
R o Tor 0 Ton (B.11)

where the sum over the integers ny,ns,n3 is replaced by the sum over the integers m;,mqo,m;
in the Fourier integrals. The sum over m, includes the case where m; = my; = my = 0.
We now have the alternative sum,

+oo Foo :too

Aen(r) = I L2L3 Z Z Z Ryt (1, m2, mi3)

11=0 ny=0 n3=0

+oo £ Foo KlLl K2L2 K3L3

—_ Z Z Z /// 1(7"1K1L1+m2K2L2+msKsL3)fklzj( 5 , 5 5 )X
s T s

m1=0mo=0m3z=0

/// DI Aet, (v') ¢ (Ki(ei=at) +Ke(eara) +Ka(ea-24)) 4o dy d (B.12)
or
+oo Foo Lo dJK

= Z Z Z /// KL, KL, K3L3>ez‘(K1z1+K2m2+K3I3) v

fk[u ( 3 3
my=0my=0m3=0 27 2m 27

x ///DWI v“ (r)e—1(1\1( o "llLl)+K2(-F;—7”2L2)+I\’3(II‘:’;"NBLB)) d.’L',] d.L'lz (l”rg

Aey(r

S

ijrs
(B.13)
Due to the geometric periodicity of the unit cell we may write
Aer () = Aer, (o), @), xy) = Al (&) — miLy, xy — moLy, & — myLy) (B.14)
and

dr'y drlyday = d () — mLy) d (x5 — maLs) d (25 — maLs) (B.15)

so that by making the change of variable
(x) —myLy,xh — moLy, xy — myLs) = (z7, 25, x3) =" (B.16)
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we obtain

3
Acw(r /// d’K s (K1L1, Ksz, K3L3> (i K121+ Kawa +Kazg) o
2w 2m 2m

oo Foo +oo

«3S 3 Z/ / /D;;;SAa e K gy (") (B.17)

ma=0m
m1=0mo=0m3=0 . (m1.ma2,m3)

where the volume integration extends over the volume V, (m;, m2, m3) of the unit cell whose
center is at the point (mjL;,myLy,m3Ls). Since m;,my,m3 range over all integer values,
the summation of the volume integrals extends to all the cells in the periodic lattice, i.e.,
it extends over the entire volume, V, of the composite medium. The expression for Aey(r)
thus takes the form

d’K K\L, KoL, K3L3\ k.
Aé'kl /// fklzg( o '"or ' 9n > x
m ’ —iK.r”
// DI Aet, (2) e K qv (x") (B.18)

By interchanging the order of the volume and wave vector integrals and noting that r”

can be replaced by r’ since it is a dummy integration variable, we obtain

d’K KL, KLy Ks3lLj K. (r—1) 1ym ,
Aeu(r // dv (r /// fkl”( or 7 2m  2«w ) D””AE (=) (B.19)

KLy KL, K3Lj
27 ' 27w ' 27

Introducing ( ) in place of (ny,ng,n3) in the expression for

Friij (n1,m2,n3) = gklij(Cl (n1,m2,m3) , G2 (M1, 2, M3) , G5 (M1, N2, 13) ) (B.20)

then gives

KL K2L2 K3l KL, K2L2 KiLs KLy KoLy K3Ls
Gklij Cl( ) C2( ) Cs( )

T2 2m Yo 2 o 27
1 (M) M (C)
5( o KK+ — 52 K K (B.21)
with
K; K;

C K \/IT,,E (22)

and the perturbed strain increment takes the form

Acy(r ]/ 4V (r ///(;‘;K;;< ik (C)KK,+ llKlz(OKK) iK.(r— r’)DZI”Ag ( 2

(B.23)
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But, from Appendix A,

/ / / ddK Mzkl(c iKr—r) / / / d3K M K (r-r)

since Gy (r - r') = Gy (r' — r), and therefore

6G,k (r—r') ///d‘KM e
82?]8171
Inserting the last relation into the expression for Aeg(r) then shows that
PGy (r—r1") &Gy(r—71)
A / / dv (r D™ Ae
Eulr 2 ( Oz;0x, * Oz, O0xy ralAere (1)

From the definition of the tensor Ugmn, (r — r’) in equation 83, we see that
Aey(r / [[Vuis (v = ¥') DF 865, (1) av (x)

which is the result obtained with the Green’s function approach.

(B.24)

(B.25)

(B.26)

(B.27)

The Fourier series expression for the perturbation strain increment is thus identical to the

Green’s function expression and the two are linked via the Poisson sum formula.
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Appendix C

Poisson Sum Formula

In Fig. 7 the function f(z) = [(a: - —L) %L]3 is shown on the unit cell extending from z = 0

to x = L. The corresponding function defined on the n'* unit cell to the right is given by
f(z + nL) and the periodic function ¢(z), which is comprised of the functions f(x + nL)

defined on all of the unit cells extending from £ = —o0o to z = 400, is given by
g(z) = Z flz+nL) (C.1)

Each function, f(x+mnL), is defined only over the corresponding n'" periodic cell and is taken
to be zero outside of the cell. Each function can therefore be represented as a Fourier integral
and the periodic function ¢(z) can be written as a sum of Fourier integrals,

Z f(x +nlL) Z Fourier integral of f(x + nL) (C.2)

n=-—00 n=—o0

By setting £ = 0 in both summations we obtain the Poisson sum formula. This method is
outlined at the end of this Appendix.

The Poisson sum formula can also be derived by expanding the periodic function ¢(z) into
a Fourier expansion and showing that the Fourier integral sum, when x = 0, is the sum of
the coeflicients in the Fourier series expansion.

Since q(x) is a periodic function of period L, it may be expanded into a Fourier series in

the form
i 27rm:r

q(z) = Z ame” (C.3)
where
1 rL i2xmaz’ , ,
amz—/ e L q(2) dx (C.4)
L Jo
The object is to show that the Fourier series
121rmz L i2rmz’
q(z) = Z e / e L q(z')dx (C.5)
0

771_—-00

represents a sum of Fourier integrals. This is easily accomplished by introducing the expres-
sion

> f(z'+nL)
n=-—00

into the Fourier expansion and changing the integration variable by means of the relation

y=212+nL (C.6)
In this way we obtain

1 &= 127rm£ o nL i2rm(y—nlL) -

= S fle+nl)= [y e > [ e L fwdy (©1)
n=-—0o0 L= —00 n=-—o00 y:(n—‘l)L

52



The exponential function exp(i2rmy/L) is a periodic function with period L, so that

12rm(y—nl) i2rmy
e L =e L (C.8)
If we set £ = 0 and note that the sum over the integration limits is equivalent to summing
over the entire axis of x from z = —o0 to £ = 400, we obtain
0 121rmy
S f(nL)= 7 / y) dy (C.9)
n=-—o00 m—-oo

Putting L =1 gives

g0)= 3 f Z / &2y £ (y (C.10)
and by changing the integration variable to K = 2ny/L, we obtain
- meL
C.11
2 g0 3 o [ et () ax e

m=-00

In three dimensions this result takes the form

oo +oo foo too $oo Foo L L2L3
Z Z Z f(n1,7l2,n3) = Z Z Z // d3K i(m1 K1 Li+meKaLa+maK3Ls) %
n1=0ny=0n3=0 m1;=0m=01m3=0 (27!'
K\L, KL, K3L3>
: C.12
X f( 27 or 27 ( )

which is the form used in Appendix B. The cubic function defined here for illustration purposes
has the property that the constant a¢ in the Fourier expansion is zero, since fOL f(z)dx = 0.
This term may therefore be omitted from the summation on the left and the summation signs

primed to denote the omission of the term with n; = n, = n3 = 0.
It is now possible to show that the Poisson sum formula follows from the Fourier integral

sum in equation C.2.
We have the Fourier integral sum representation

Z f(m) = Z / fly)o(y —m)dy (C.13)

m=-o00 m=—00

where the Dirac delta function is given by the Fourier integral

1 o,
Sy —m) = — / eiw-mz g, (C.14)
21 J—oo
Then the Fourier integral of f(m) is
1 [o ] [es)
s —imz g / izy C.15
fim) =5 [~ ez [ e f(y)dy (C.15)



Putting 2z = 27« gives
f(m) :/ e—i?wma da/ ei27ray f(y) dy

The Fourier series expansion which culminates in equation C.10 shows that
o 2ra
fla)= [~ ™ f(y)dy
so that equation C.16 becomes
00 )
f(m)= [~ e f(a)da
—o0

We may therefore write

— 00

> fmy= Y fm= 3 fem= 3 [ e f(a)da

m=-o00 m=00 m=-—o00 m=—oo "

(C.16)

(C.17)

(C.18)

(C.19)

This is the Poisson sum formula in equation C.10, from which equations C.11 and C.12 follow.
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Appendix D

Integral Equation for Displacement Increment
In Neighborhood of Free Surface

The static equilibrium equation for a medium with elasticity tensor D7, is obtained from
equation 37 as

o(Ach(r))  d
m = DT Aeg(r D.1
ijkl axj (91']' { ijkl kl( )} ( )
in which Al (r) = Aed (r) + Aey(r).

In this equilibrium relation we will not assume that the strain increment Ae%,(r) applied
at the surface of the composite is constant and will take it as a spatial variable. If we set

Afi(r) = 5% { nlAek(r )} (D.2)
and note that i
O(Au O Au; (r
AL (x) = 2( ( Bal;( ") + ( ;x’k( ))) (D.3)

the equilibrium equation may be written in the form

02 (AulT)

N AF D.4

m
Dijkl

where the symmetry of D, with respect to the indices k and [ has been used. On denoting
the operator F; by the relationship

52
Fi = DZjlkl %R (D.5)
the equilibrium equation is
Fab] = Af, (D.6)
Now consider the integral
I, %) = ﬂﬁ,.a% () v (r) (D.7)

for any two field variables ¢;(r) and ¥;(r). These field variables may be tensors of any rank.
For example, if ¢ and ¥ were second rank tensors, then I(¢, ) would be a second rank

tensor integral

Ino(¢, %) // By (1) Figtpyg (v) AV (x) (D8)
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From the definition of the operator F;; we have

I(¢,%) = ///¢ ai (3'2;‘" '))dWr’) (D9)

and since

2 (ot 0, 2 lE)) - 208Dy O D 4

1pqj 833; 8113;) pqj afl'fl ipgj

oy; (r')
oz, ( oz, ) (D-10)

the integral becomes

I, ) = /V// 5% (cbi(r’)D;quadgx ) /// 0¢: (r D;;wa%’;:) dv(r) (D.11)

The first integral can be transformed into a surface integral via Gauss’ divergence theorem,
so that

m 8¢] 8¢1 D™ 6% (I',) ’
(¢, %) // ny (') ¢ (') D, / 55— Dins G V) (D12
By interchanging the arguments ¢ and % it is evident that
m 8¢) awl m a¢ ( I)
//n,, ') Dy, =2 /// Dy~ gy V) (D13

Now the elasticity tensor DI . is symmetric with respect to its indices, so that the interchanges

ipqj
ip — pi, qj — jq, ip — (qj or jq), qj < (ip or pi) (D.14)

leave the elasticity tensor unaltered. This shows that the volume integrals in I(¢, ) and
I(v). ) are identical, so that Green’s identity ([38], page 434) can be written as

164) = 1.9) = [[ ny (¢ ) (0006 25, 2280 0 D, 25 ) aste) 1o

or
J[] @:F s~ wiFs05) av = [[n, (¢D gd’f ¥:Dp, g‘b) s (D.16)
Now cl‘l/oose the field variables ¢ andslp as a vector and second rank tensor in the forms
¢i (r') = Auj (') — Auj (r') = Au; (') (D.17)

and
Oij (v') = Gij (r — 1) (D.18)

where ¢, (r') is the perturbation displacement increment A, (r') and Gj; (r — r') is the Green's
tensor function satisfving the differential equation (¢f. Appendix A),

FiG(r—r)+646(r—r)=0 (D.19)
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The integral relation then becomes
[ {(adf @) - 8 () FisGe (e = ¥') -
1
— Gi (r = 1"} F;; (Auf (r') — Au) (r'))} dv (r')
= [[m @) { (Ad] (') - A () D ;;wa—G—%i) -
S

q

G (r—r)DP (6(AUJT (r’)) B G(AU? (r'))) } ds(r') (D.20)

oz, oz,
Replacing F;;Gji (r — ') by —6ix6 (r — r’) in the first term of the volume integral gives

Aul (r) — Aud(r) + ///Gik (r—r")F; (AuJT (r') — Au) (r')) av(r')
v

o (o{Auf () o(Av(r)
—//n,, { r_r)D”"“( ( oz’ )_ (8:1:' ))—

q q

- (Au] (r') - Au) (r)) D;;;w@’g;—;r/)} dS(r) (D.21)

q
From the definition of the operator F;; we obtain the relation

]:UAU;F( ) Afz = {DzjklAgkl } (D.22)

and by inserting this result into the integral equation and noting that

D 8(Au? (r’)) _ D:ij_;_ (G(AU? (r’)) + 8(Au2 (r’))) D™ AE ( ) (D.23)

T Bl bz}, ba; 94

we find that the total displacement increment is

AuT(r) = Au(r)— ///Gik(r—r’) ai,‘{ Dy, (Aes, () — A, (1)} dv (') +
v j

b e { G o= ) Dy (8 ) = el ) -

S
~ (Ad] (v) - AW (r')) Dy, ‘9—(;&("—_‘3} ds(r') (D.24)

i ipqj
oz,
In the volume integral an integration by parts with Gauss’ divergence theorem using the
relationship

Gy (r —1') _ 0Gy (r—1')
oz - oz; (D-25)




gives

///Gz‘k (I' - I") 6?;’. { e (Ag ( ) — A523 (r/)>} dV(r’)
v J
= [[f 52 {Gue =)D (361, @) - A ()} ave) -
e BG”}M )i, (e, () - e, () V(@)
- // ) () G (£ = &) DIy, (A, () = AL, (1) dS(e) +
+///8G*a% oo sd) e o
This result may now be substituted into the integral equation to produce

Aul(r) = /// aG”"(r DF. (Ael, () — AL, () dV(K) +

+ {/ n; (r') {Gik (r-r')D ,]TS (AE (r ) — Ag}, (r’)> +

(A () - 2 (6) D, 2O 2T s D27

In the first two termns of the surface integral we observe from equation 35 that
( )Dz]rs (AEZ; (I‘,) - Ag:s (I‘,)) = njAaij (I‘,) = Atl (I‘,) (D28)

represents the incremental surface traction on the surface of the composite. Equation D.27
represents the well known Somigliana identity ([38], page 93) for the displacement increment.
In the case where the composite is assumed to be of infinite extent the surface integrals in
the preceding integral equation vanish, and if A%, (r') is assumed to be spatially constant,
the total displacement increment is given by the relationship,

AuT(r) = Aud(r) /// aG“ar] DI Ael, (r') dV (r') (D.29)

which corresponds to equation 79 and is the form used in the main report. However, equa-
tion D.27 must be used when the surface is not infinitely removed and if A% (r') is not
assumed to be constant.

In a finite element context it will normally be assumed that the fibers are very small in
comparison with the dimensions of the finite element. At the Gaussian integration point in
the finite element it is then permissible to neglect the contribution from the surface integrals
since the surface of the finite element is assumed to be many periodic cells away at “infinity”.
In some situations, however, this may not be a valid assumption. Some turbine blades and
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turbine engine combustor liners are fabricated fromn thin sections in which the central passages
are hollow to allow cooling air to pass through the component. In the thin cross sections of
such components the surface integrals must be retained in the constitutive formulation.

Suppose, for example, that the total displacement increment at the node points of a finite
element are given. From these nodal values and a knowledge of the element’s displacement
interpolation functions it is then possible to compute the total displacement increment Au?(r)
on the surface of the element and the total strain increment A&l (r) at any point. Since
Aul (r') = Auf (r') on the surface of the finite element, the last term in the integral equation
vanishes and the total displacement increment is determined from

Aug(r) = Aw(r) - /// ?GikT(;_ﬂ r (A, (1) — AL, (X)) aV (') +
+ // n (r ~1) D, (A€l (F) - Aej, (r')) dS(r') (D.30)

in which the terms in the surface integral represent the contribution to the total displacement
increment due to the incremental traction,

At; (r') = n; (') D, (Ael, () = Aeg, (r')) (D.31)

on the surface of the element. This surface traction is needed to maintain the displacement
increment equality Au! (r') = AuY (r'), which is imposed at the element’s surface.

By differentiating Au/ (r) with respect to z; and z; and taking half the sum, the total
strain increment is subject to the integral equation

Acfi(r) = Aci(r) + / [[ Ui (v = ') Dy, (A3, () = A, (1)) V() +

ik —r aGl ~r ’ * / ’
+£/nj(r’)%(aGk8(xl r)+ la(:ck r)>Dl"J‘,s (Asﬁ(r)—Aers(r)) dS(r')

(D.32)

in which

D7y (v') = DijyAck (') — 6Dijp (r') [Aé‘fz (r') — Ac (P')] (D.33)

and this integral equation should be used for thin sections of composite material where sur-
face effects are important. This implicit integral equation is similar to that for the infinite
medium but contains a correction term for the surface effects in the last integral. This surface
integral will become less important—due to the derivatives of the Green’s function-—when
the integration points r’ are far removed from the field point r and it vanishes for an infinite
medium.

In the preceding development it was assumed that the displacement increment Au! (r') was
known, by interpolation with the element displacement polynomials, from the nodal values.
This forces the incremental surface traction At; (r') to adopt a periodic distribution in order
to maintain Au?! (r') = Auf (r') on the surface of the element. We could, alternatively, assume
that the surface traction increment is zero on the free surface of the element, in which case
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the total displacement increment Aul(r) will exhibit a periodic variation on the the surface
and the surface takes on the appearance of a frilled structure.

If we therefore assume that the finite element is thin (see Fig. 8); that the surfaces are
free of surface traction; and that the surfaces at the ends of the finite element are sufficiently
far removed from the Gaussian integration point, the first term in the surface integral in the
integral equation is zero and in lieu of equation D.30 the relationship for the total displacement

increment now takes the form,

2 = udte) - fff ey, (8, () = Ak () V() +
+ l/ n; () (D] (') - A (r')) Dg;s?gs—’“(;;;r') ds(r)  (D.34)

The solution to this integral equation gives a periodic total displacement increment, Au] (r),
which, on the surface of the composite, will exhibit frilling.

It is clear that during the finite element analysis frilling will not occur in the element. The
interpolation functions normally used in isaparametric elements are linear and quadratic, and
cannot adopt the required periodic behavior. However, the stiffness of the finite element—as
computed at the Gaussian integration points with the composite constitutive model-—will
reflect that the fact that the constitutive properties are computed as though the element were
free to take on a frilled appearance. When the “damage critical” strain-temperature history is
used to determine the stress-strain history variation throughout the unit periodic cell outside
of the finite element program, the preceding integral equation will allow the frilled appearance

of the composite to be calculated.
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Appendix E

Evaluation of the Eshelby Tensor

The Eshelby tensor S;pm is defined by the relation

Siptm = = {&r Oy, ///Gp] ) AV () + &B,,Oxk///G” (r/)}—ﬁjklm (E.1)

or as

Siptm = /// Uiprs (¢ = ') dV(t') Dyoim (E.2)

where the field point r lies within the volume, V, and where the volume extends over an

infinite cylinder of radius a in a medium with elasticity tensor D;jy. Although the Green’s

function for transversely isotropic materials is known [24], it is more convenient to work with

the Fourier integral representation of the Green’s function as given in Appendix A.
Introduction of the Fourier integral representation,

Gix (v~ / / / d3K M My (©) -ik-r) (E.3)

where ¢, = K;/K = K,/,/K,K,, into one of the volume integrals in the definition of S;p,,
gives, on reversing the order of the volume and wave vector integrations,

0? / /
kaij = m‘/‘//G” (I' —Tr ) dV(r ) (E4)

Lgis = a.narg / / / dgK e )e_iK'r/// TV () (E-5)
J

The Laue interference integral [39] extends over the cylindrical volume and can be written as

I= /// Kr' gy (p /// (Krel+Kazy+Kazh) gt got gl (E.6)

Let 2] = pcosf, z, = psinf. Then in cylindrical coordinates

00 a 2= O .
] = / /0 /0 611\3:1:3 e'l( | pcosB-+Kopsing) d’L‘g ngde (E?)
00

or

Since -
/ R0 4! = 278 (K) (E.8)

where 6 (K3) is the Dirac delta function, the integral takes the form

1_27,[_5 K //0 i(Nipcost+Kypsiné) ngdg (Eg)
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dg
Let p = ———— ———=——. Then, if K = /K? + K3,
\/K12+K2 BNy ) b
qKicosé qKosiné

2n8 (K3) /““K/27r z(f2+K2 VE}+K; >qdqd0 (E.10)

- JK2+ K3
Kl K2
If we now set ———— = c0s 8, ——me—
VKD + K3 VK? + K3

aK
2né (K3 / / zqcos(e -6') qdq dao (E].].)

'S Ukir KN

Since the integration extends over a whole circumference, it is immaterial where the origin
of 4 is placed. The integral may therefore be written as

= sin#’, then

27
;= il / qdq [ =0 df
\/K2+K2 0
276 (K aK
m6 (Ks) / qdq2nJy(q) (E.12)

VKR + K3 0
J, (a,/Kf N K§)

or as

I =47% (K3) a (E.13)
VKE+ K3
where Jy and J; denote the usual Bessel functions of order zero and one.
The integral Lig;; can therefore be written as
Ligi; = [ / / K MG O™ ey o (o %) (E.14)
S ) e Dardr, Hs) e VE:+ K3 o
Now I
A (E.15)
Jdzy O, g
so that
1 [/ dK,dK->dK; 4
gi; = T , K.K, M
Lkg] 277'[[0/[(12_*'[(21“*'[(3 kfr g d¥lyq (C) X
- Jl(a K12+K§>
x emHom gritkintken) § (K)o (E.16)

K} + K3

If & = 3 or g = 3, the Dirac delta function 6 (K3) gives zero values for the integral. Hence,
the non-zero values of L,;4;; are given by k = 1,2 and g =1, 2.
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Invoking the sifting properties of the Dirac delta function, viz.,

/°° F (K Ko, Ka) 6 (Ky) dKs = f (K4, Ka,0) (E.17)

then gives

1 [y KK Ji (a\/K12+K§)
Ligi; = — 7= // dK,dK, MJI (1,2, ¢ =0) (——-—2 k229 2) et Hint+Kaza) g

2rJJ Ki + K3 /K? + K2
E.

(E.18)

where the unit vector ¢ is now defined by the relations

K1 K2

(=, =i,
VK2 + K32 VE? + K}

G =0 (E.19)

If we put

I(l K1 K2 K2 .
(1 = — = —————= = cos¥, (o = — = ————=—— =sinf (E.20)
K K+ K3 K\ /K? + K}

and set x; = r cos ¢, xry = rsin @, then in cylindrical coordinates,

1 oo p2m oo sadi(al
L,cg,-]:—%./0 /0 K dK dO M; (G1, G) Gy e K e ¢)—1§(—) (E21)

The integration with respect to # extends over a complete circumference, so that

1 27

Lygij = ]V[i;l (€1, C2) GGy d9/0 ae st J(aK)dK (E.22)

27 Jo

Since Sy, is real, the real part of the preceding integral involving the integration over K is
N = / acos(hrcos@)J;(aK)dK (E.23)
Jo

Setting z = rcos @, and noting that cos(Kz) = cos(—Kz), we need be concerned only with
positive values of z. Now if the field point r lies within the cylindrical volume, then 0 < 2z < a.

But, from Gradshteyn and Ryzhik [40],

a cos {sin_l(z/a)}

N = / acos(K2)J, (aK) dK = for 0<z<a (E.24)
0 a2 — 22
If w = sin"!(z/a), then
acosy cos Y cos
N — — = = 1 E'2l’
a? — z2 {\/a2 — ZQJ oS Y (E.25)
a
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Thus,
Ligy = 5 [ M (G1,6a) GGy 8 (.26)

independent of position r in the cylinder as expected from Eshelby’s result. In this integral we

— -1
have (; = cosf, {, =sinf, (3 = 0, Mj;l ((1,G) = (CmDmiann) and k and g are restricted
to the values 1 and 2. The Eshelby tensor may now be written as

. 27 2
Dk { [ M5 (606 GG+ [ M5 (GG G a9} (E.27)

When (3 = O the Christoffel stiffness tensor for a transversely isotropic material, AM;;, and its
inverse, M, ;! ;> (which applies to the homogenized medium of a composite with fibers arranged
in hexagonal arrays) have the component forms

Siplm =

My = Dyndi+ % (51111 - —51122) ¢ (E.28)
My; = My =3 (—Dnu + Enzz) G162 (E.29)
My = Ms =0 (E.30)
My = (Ellll - .151122) ¢+ Diuns (E.31)
My = Mz =0 (E.32)
Msz = Diais (E.33)

and
Mo = @11_”1 ~ Dum) i + Dinds (E.34)
3 D1 (Dllll - D1122)

D D
MF = My = -t (E.35)
Dy (Dun — Duze)
ME' = My'=0 (E.36)
1 Dy + % (ﬁllll - E1122) &
Myt = — au — (E.37)
3Dinn <D1111 - D1122)
My' = Mg'=0 (E.38)
1
]\1~1 = —_ E39
3 Do (E.39)
The Eshelby tensor can now be determined by integration in the form,
5D1111 4 Diize
S = el E.40
1111 $Diuy ( )
Sx2 = Sun (E.41)
3D1122 — Dun
Si100 = il E.42
1122 8D, ( )
Dy
133 (E.43)

Soxzz = =
? 2D
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¥
bl 133

S =
Stz =

52323 -

A
b'Z'.Z.'&Ji

51122

51221 =

32)‘llll B —51122

S‘Dllll

1
52332 = 51331 = Sl313 = 51313 =12

(1.44)
(E.45)

(E.46)
(E.47)

The Eshelby tensor for tetragonal materials -—which applies to the homogenized medium

of a composite with a square array of fibers—is currently being worked out.
The results for an infinite isotropic cylinder may be recovered by taking

Dy = 2p(1 - v)/(1 - 2v), Dy = 2pr/(1 — 2v),

and Eugg = 2[1,1//(1 - 21/) (E48)

where p is the Lamé shear modulus and v is Poisson’s ratio. For an infinite isotropic cylinder

the Eshelby tensor reduces to

Sun
Sazaz
S22
Sa233

51133

82211

81212

52323

5 —4v
8(1 —v)
Siin
v — 1
8(1—v)
v
2(1-v)
Sa233
Sti22
3—4v
S1221 = m

. - 1
S1313 = S1331 = Sazz2 = 3

(E.49)
(E.50)
(E.51)

(E.52)

(E.53)
E.54)

(
(E.55)
(E.56)

The Eshelby tensor for both isotropic and transversely isotropic materials can also be
deduced from equations 17.27, 17.30 and 17.31 of Mura’s book, [24], by setting o = 0 in his

notation.




Appendix F
Proof that UUH(X — y) = Uijkl(y - X)

From the definition of U, (x —y) we have

1 [{PG(x~Yy) O*Gn(x —y)
Uijkl(x -y)= ) ( Ox ;07 + ox;0x

t (9Gik(x - y) N _BGik(x - y)

= , SO that
3.’1)1 8y,

Bu

32Gik(x — y) N 62Gik(x - y)
or;0z;  Oy;0u

The operator can therefore be written as

1 <8ZG¢;¢(X ~y) N O?Gn(x — y))
2 Oy; 0y Oy.0y

Uij(x—y) = -

But Gix(x —y) = Gi(y — x), so that

__1_ (8201'1".()’ - x) + 32ij(y - x))
2 Oy;Oy Oy Oy

Uijn(x—y) =

or
Ujni(x —y) = Uy — x)

as required.
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Appendix G

Differentiation of Singular Integrals

In the text and Appendices we have taken derivatives of the volume integrals and written,
for example,

L, = /// ‘9G”‘5% Dy, A, () dV(r')
_ ///a %ﬁqax] DR A, (r') dV(r') (G.1)

If the integration volume V contains the field point r the integrand 0Gy (r —r') /Oz; is
singular at the point r’ = r, and the above operation in which the derivative is taken inside
the integral must be treated with caution, as pointed out by Bui, [41] and Born and Wolf,
[42]. We should, in fact, isolate a small spherical volume, D, about the singular point v’ =r
and evaluate the integral according to Bui’s procedure, viz.,

L, = / / / 82((’;’;6% )D:?NAE (r') dV (r') +

bz, ///8le DZL”A@: (r') dV(r')

///82%;33"7 )DZTSAE (r') dV (r') —

W (28250 v Dy e @2

where we have used the fact that, if the spherical volume D about the point r is small enough,
the strain increment can be considered constant and taken to have the value at the center of

the sphere, Ac? (r). The integral may therefore be written as

///0 C;;qa% )DI'}TSAE (r') dV (r) —

// ng () 25X i 20 45 () D At (1) (G-3)

The first volume integral is evaluated in the principal value sense as D — 0.

Rather than using the preceding operations outlined by Bui, we may treat G;; (r — r’)
as a Fourier integral. The preceding operations are not then necessary and the derivative
can be taken inside the integral. That is, equation G.1 is valid when the Fourier integral
representation of the Green’s function is used.

67



To demonstrate the validity of equation G.1, consider the singular integral used by Bui.
He considers the derivative of the integral

L dt 11—z
F(x)z/.lt—x:k)gl1+x| (G-4)

where —1 < r < 1. Since the integral is known, its derivative is simply found as

dF 1 1
der x—-1 z4+1 (G.5)

Notice that the integrand is singular at the point ¢ = x. Bui demonstrates that in order to
take the derivative of the integral we must write it in its principal value sense,

F(m)zlim( [ i) (G.6)

t—=x t—x

t=—1 t=x+e€

and the derivative dF/dz must be evaluated by noting that both limits and the integrand are
functions of x. Using Leibnitz’s rule for differentiating an integral whose limits depend on x

gives
dF d(z —€) 1 z—e 1
o [
dr el—l;%< dr m—e—x+ o1 odz \t— >+
. 1
Py Ch D +/ i<i) dt
e—0 dr T+4+e—= a:+ed x
lim 1 1+/I"f dt
= 1 —_— e — —_—
—0\—€ € Jo (t—:v) z+€ (t—a:)
2 T—¢€ 1
- nm<—-—-[ ! J -[ ! ] ) (G.7)
=0\ € t—xzia t— Zlgte
or

dF 1 1
de x-1 z41 (G.8)

To avoid the convected terms which arise from differentiating an integral whose limits
depend on . consider representing the integrand as a Fourier integral. We have, from Grad-
shteyn and Rhyzik [43], the Fourier integral representation,

1 _ 1 * _73 . —iK(t—z)
t_m————m/_w\/gzsgn(lf)e dK (G.9)

The singular integral F'(x) can then be written as

. _ " __1_ > ﬁ . A\ —tK(t—z)
F(x) = ./Aldt\/%/_m\/;zsgn(h)e dK
1 00 . 1 -
= T ./hoo \/_gisgn(l() ehr dK/_l e M dt (G.10)
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If we now differentiate with respect to x in the normal manner we obtain

dF e ikt 11
— = = K5 K)e''riK
- 271_/ d Isgn( yertTi [(—11&)] y

= 271_/ dK [zsgn “‘“’( " e_iK)
= \/-—27/_00 dK \/;isgn(K) e+l _ e'”"(l_z)) (G.11)

A comparison of this integral with equation G.9 shows that this Fourier integral has the
inverse relation,

dF 1 1

— = — .12
dx r-—-1 x+1 (G.12)

which is the correct result.

Thus, by expanding the integrand of a singular integral as a Fourier integral, reversing the
integrals, taking the normal derivative, and inverting the resulting Fourier integral, we obtain
the correct derivative of the singular integral. It is then clear that if the Green’s function is
represented in Fourier integral form the procedure of Bui is not required. In fact, the Eshelby
tensor in Appendix E is obtained by taking the derivative of the Fourier integral, and the

correct result is obtained.
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Appendix H

Origin of Self-Consistency

Many researchers in the mechanics literature suggest that the self-consistent method has its
origins in the present century. It would appear that the method is, however, very old and
has its origins in the last century. In the Lorentz-Lorenz theory ([42], page 87 and [45]) of
1880 the electric dipole moment p in a dielectric is related to the electric field E' by the
constitutive relation p = oE’, where « is the polarizability. The polarizability « is related to
the refractive index n and the number of molecules per unit volume, N. If E is the mean or
volume averaged field applied to the dielectric the actual field at any point is given by

E =E+ @?T]!p (H.1)
where 4w Np/3 denotes the perturbation or deviation from the average electric field. As shown
on page 85 of reference {42] this value is estimated by smearing the effects of the molecules
outside a spherical voluine enclosing the point at which the field is observed. An analogous
formula for statical fields had been derived even earlier by Clausius in 1879 and Mossotti in
1850.

Twersky [44] observes:

In the biography of John William Strutt (third Baron Rayleigh) by his son Robert
John (the fourth baron), the son quotes the father on the verse that faces the ini-
tial contents page of the first four of Lord Rayleigh’s six volumes of Scientific
Papers: “When 1 was bringing out my Scientific Papers I proposed a motto from
the Psalms, ‘The works of the Lord are Great, sought out of all them that have
pleasure therein’. The Secretary to the Press suggested with many apologies that
the reader might suppose that I was the Lord.” The Secretary need not have been
so apologetic. The second verse of Psalm 111 should have been augmented with
the next three lines: “His work is honourable and glorious, and his righteousness
endureth forever. He hath made his wonderful works to be remembered.” Depart-
ing from King James’ translation, we may read in the Hebrew of the last verse
of this psalm the most important of all the Rayleigh principles of mathematical

" physics— -that the wise beginning of work in this field is to assume that the prob-
lem had been considered by Rayleigh and to study his works: “The beginning of
wisdom is reverence for the Lord; very good sense have all who do so.”

Rayleigh [45] tackled the problem in his paper “On The Influence of Obstacles Arranged
in Rectangular Order Upon the Properties of a Medium” and was probably the first person to
define when the self-consistent method, viz. the Lorentz-Lorenz formula, could be expected
to break down. At the end of his paper he states:

The general conclusion as regards the optical application is that, even if we may
neglect dispersion, we must not expect such formulee as (the Lorentz-Lorenz equa-
tion) to be more than approximately correct in the case of dense fluid and solid

bodics.
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